1) Consider
a gas of neutral hydrogen. Using the Boltzmann equation and the information in
the table (see April 2 blog post), compute the temperature at which one will expect equal numbers
of atoms in the ground state and the first excited state.
Solution:
The
Boltzmann equation is:
N2 / N1 = [g2 / g1 ] exp (- E2 – E1) / kT
And
from the table, g2 = 8 and g1 = 2
We
require the condition that: N2 = N1 so:
1
= [8/ 2 ] exp (- E2 – E1) / kT
But: E2 = -
13.6 eV and E1 = -3.4 eV, therefore:
1
= 4 exp [- 13.6eV – (-3.4 eV) ]/ kT
1
= 4 exp (-10.2 eV)/ kT
Taking
natural logs:
ln
(4) =
(10.2 eV)/ kT
where:
k = 8.6174 x 10 -5 eV/K
Solving
for T:
T
= 10.2 eV/ (ln 4) (8.6174 x 10 -5 eV/K)
T
= 10.2 eV/ (1.3862) (8.6174 x 10 -5
eV/K)
T=
85 388 K or T = 8.54 x 10 4 K
2)
For
the Balmer a line (called H- alpha), we know:
E3 – E2 = - 13.6 eV (
1/ 3 2 -
1/ 2 2 )
= 1.88 eV
a)
From
this information calculate the ratio N2 / N1
b)
Obtain
the specific intensity from:
I
u = 2h u 3 / c 2 [1/
exp (hc/lkT]
Solution:
N2 / N1 =
[g2
/ g1 ]
exp (- E2 – E1) / kT
from
the table, g2 = 8 and g1 = 2
k
= 8.6174 x 10 -5 eV/K
N2 / N1 =
[8/ 2 ]
exp (- E2 – E1) / kT
N2 / N1 = 4
exp (-1.88 eV)/ (8.61 x 10 -5 eV/K) (10 4 K)
N2 / N1 =
4(0.113) = 0.452
b)I
u = 2h u 3 / c 2 [1/
exp (hc/lkT]
We
need to use consistent cgs units. Planck constant h = 6.62 x 10 -27 erg-s
c= 3 x
10 10 cm/s
l = hc/
E = (6.62 x 10 -27 erg-s) (3 x 10 10 cm/s)/ 3.0 x 10 -12 erg
l = 6.62
x 10 -5 cm
k=1.38
x 10 -16 erg/K
[1/
exp (hc/lkT]
=
1/
[exp (6.62 x 10 -27 erg-s) (3
x 10 10 cm/s)/ (6.62 x
10 -5 cm) (1.38 x 10
-16 erg/K)( 10 4 K)
=
0.113
I
u = 2h u 3 / c 2 [0.113] erg cm -2/s
But u
= E/h
=
3.0
x 10 -12 erg/ 6.62 x 10 -27 erg-s = 4.53
x 10 14 /s
So:
I
u = 0.226(6.62 x 10 -27 erg-s) (4.53 x 10 14 /s) 3 / (3 x 10 10 cm/s) 2
I
u = 1.51
x 10 -4 erg cm -2/s
3)Calculate the transition probability you get using the
Einstein equation:
A 21= 6.67 x 10 16 [g f/g2 l2 Å]
What possible errors
might cause the values to diverge? (Take g = f »
1)
l = 6.62 x
10 -7 m = 6.62
x 10 -5 cm = 6620 Å
With
g2 = 8 and g
= f = 1
A 21= 1.93 x 10 8 [Å-2]
Compare to standard form (see e.g.
Wikipedia, “Einstein coefficients”) given in multiple physics papers as:
A 21= [f g1/g2]{ 2 π u 3 e 2
}/ e o me c3
A 21 = 1.87 x 10 7 or:
0.187 (in defined units of 10 8 s)
Error sources: Imprecise oscillator frequency f
Error in one of the statistical weights.
Error in one of the statistical weights.
No comments:
Post a Comment