(3) We have:
[z3·z4] = (z3·z4) cis(arg(z3) – arg(z4))
We already know: arg(z3) = 14 deg.
And: z3= 4.1 cis(14)
We also saw: z4 = 4 + 3i = 5 cis (36.8)
And: arg(z4) = 36.8 deg
Then write out the product, viz.:
[z3•z4] = (z3•z4) cis([arg(z3) – arg(z4)] =
[4.1][ 5] cis [arg (14 deg) – arg(36.8 deg)]
For which:
arg(z3) – arg(z4) = [(14) – (36.8)] = -22.8
Therefore:
[z3•z4] = 20.5 cis (-22.8) = = 20.5 [(cos (-22.8) + isin(-22.8)]
[z3•z4] = 20.5 [(0.92) + i(-0.38)] = 18.9 - 7.8i (rounded off )
(Note: The result above corrected from yesterday, since the angular difference in the arguments is (-22.8) not (-24.8)!)
No comments:
Post a Comment