F = k hx v y r z )
Solution: Use the table for dimensions to write them out for each factor:
For Force : F has dimensions M L T -2
Velocity v has dimensions L T - 1
h has dimensions M L-1 T -1
r has dimension L
Then, equating dimensions on both sides:
M L T – 2 = [M L-1 T -1]x [LT - 1] y [L]z
We next equate indices for M, L, and T on both sides:
For M:  1 =   x 
 
For L: 1  = -x  - y   + z 
 
For T:   -2 = -x – y
Next, solve for each of the indices:
a)  x =  1
b) y =   1
c) z =   3
Finally:  F = k h v  r  3  
2)  Repeat the exercise above to obtain the equation  for the period (T) of a pendulum’s swing. (Hint: The pendulum's period T should depend on its length L and the acceleration of gravity, g.)
Solution: Write out the provisional eqn.:
t  =    g x  M  y r z
Write out dimensions for each side:
[T]   =  [ L T - 2 ] [M]y  {L] z 
Solving for the indices:
1 = - 2x or x = - 1/2
0 = y
0 = x + z or x = - z = - (-1/2) = 1/2
Then:
t  =    k g - 1/2   ℓ  1/2
(k  will be found  by separate analysis to be:  2 p)
So that:
t  =   2 p  Ö ℓ  / Ö g  
 
No comments:
Post a Comment