Problem solutions:
1)    
For 
the electric field vector E:
 ¶ 2E / ¶ x2  =   moεo  ¶2 E / ¶ t2
If
we compare the above to the generic wave equation for propagation of transverse
waves, say on a string, we find:
¶
2y/ ¶
x2  =   1/ v2  ¶ 2y/ ¶ t2   
Where
v is the wave velocity. For the Maxwell wave equations, however, we have v = c.
And hence we can equate:
1/
c2    =  moεo     
c
2   = 1/  moεo    and: c =  1/ Ö( moεo  )
c
=  1/ Ö( 4 π x 10-7  H/m) (8.85 x 10-12  F/m )
So
that c = 2.99792  x 108    m/s
2)a)  For a particular
electromagnetic wave traveling in free space the power is given as P = 1300 Wm-2
.  Find the magnitudes of the wave vector
components,  E y  and H z   if:
P = E y  H z / c
Hint:
The impedance of free space is given by:
Ömo  / Ö εo   
= E y  / H z  
b)Find
the magnitude of the magnetic flux density: 
B z
Solution:
a)   
P = E y  H z / c  so:    Pc =  
E y  H z
= (1300 Wm-2 ) 
(  3.0  x 108    m/s) =   3.9  x 1011
  Wms-1
But:  Ömo  / Ö εo    = E
y  / H z     
So:  E
y  =     Ömo  / Ö εo     H z     
Ömo  / Ö εo    =  Ö( 4 π x 10-7  H/m) / Ö (8.85 x 10-12  F/m )
=   377  W  (Impedance of free space)
So:  E y  =     377  W (H z     )
Subs. This into Pc =   E y  H z
To get:  P c
=   377 
W   (H z) 2
Then: 
H z  =     Ö P c /  
Ö377 
W   = Ö (3.9  x 1011   Wms-1/377  W )
H z  =       3.2  x 104   Am-1
And:   E y  =     377  W (H z    ) =  
377  W (3.2  x 104   Am-1 ) 
=  1.2 
x 10 7   Vm-1
b)      B z  = mo H z
 =   (4 π
x 10-7  H/m) (3.2  x 104   Am-1 )
B z  =   0.04
T  (Tesla)
3)The
general wave equation for E is:
¶
2E / ¶
x2  =   moεo  ¶2 E / ¶ t2
Writing
out all component wave eqns.:
¶
2E x  / ¶ x2  =   moεo  ¶2 E x / ¶ t2
¶
2E y  / ¶ x2  =   moεo  ¶2 E y / ¶ t2
¶
2E z  / ¶ x2  =   moεo  ¶2 E z / ¶ t2
 
No comments:
Post a Comment