L (dI/dt) + RI = E
It’s instructive to first solve this form where E is presumed constant. Begin by re-arranging the DE to get:
L
dI = (E – RI) dt so that:  ò LdI/ (E – RI) = ò  dt
Let u = (E – RI) , Then: du = - RdI and dI = -du/ R
So:
  -
L/R  ò du/u = ò  dt
Now,
u = E – RI and this has a (+ve) value (e.g. uo = E) at t = 0 and we assume it
remains positive so çu
ç = u and:
(-L/R)
ln u  = t + C
Or:
-(L/R) ln (E – RI)  = t + C
The
constant of integration C can be found knowing that I = 0 at t = 0 hence:
C
= - (L/R)  ln E
After
suitable substitutions and some algebra:
L/R
[ln E – ln (E – RI)] = t
ln
[E/ E – RI]  = Rt/ L
Taking
natural logs:
E/
(E – RI)  = exp (Rt/L)
Which
can also be written:  (E
– RI)/ E = exp (- Rt/L)
Solving
for I:   I
= E/R [1 - exp (-Rt/L)]
Then
the current (for t > 0) always increases toward the steady state value of
E/R. Now,
what about the solution if we let E = Eo sin wt? (Oscillatory voltage).  
It
should be fairly clear from past articles –blog posts that the solution must
have the form: A sin wt
+ B cos wt
Using
the integrating factor, the solution we obtain (note this is not a
higher order DE!) is:
I
exp (at)  =  ò exp (at)  E dt  +
C
Then
one will obtain: 
I
=   Eo { RL sin wt -  wL 2 cos wt}/ (R2
+  w2 L 2   ) 
+  k exp (-Rt/L)
This
can also be done using the Laplace transform technique, after re-arranging the
equation to get:
dI/dt
+ (R/L) I =  Eo sin wt
Then
write the transformed eqn. as, using  a = R/L:
s
I(s) + a I(s) =   Eo  w/ (s2 +  w2 )
Whence:
I(s)
[ s + a] =   Eo  w/ (s2 +  w2 )
I(s)
=  Eo  w  /
(s + iw) (s - iw)  (s + a)
For
which a partial fractions decomposition can be used, followed by the inverse
Laplace transform.
 
No comments:
Post a Comment