Consider
the function: f(z) = 1/ (z+ 1) ((z + 3)
a)
Find a  Laurent series  for:  
1  <  ÷ z ÷    < 3
Solution:    We first resolve the function f(z) by
partial fractions, so:
f(z)
=  1/ (z+ 1) ((z + 3) =   ½ [1/ z + 1] 
-  ½ [1/ z + 3]  
÷ z ÷     > 1:  
 1/ 2 ÷ z +  1 ÷    =  1/ 2z (1 + 1/z)
=  1/ 2z [ 1 – 1/z  + 1/ z2 + …….]
This
is the  principal part of the series.
Next,
consider:  ÷ z ÷     <  
3:   
1/
2 (z + 3) =  1/ 6(1 + z/3) =  1/6  -
z/ 18 +   z2 /54  +  ……
This
is the analytic part of the series. So we just combine the two parts to get:
f(z)
=  1/ 2z [ 1 – 1/z  + 1/ z2 + …….] +   1/6  -
z/ 18 +   z2 /54  +  ……
b)  Laurent series for 0  <   ÷ z  + 1÷     <  
2
Consider
first:   ÷ z  + 1÷       >
  0   
We
let (z + 1)  = u  then write:
1/
(z+ 1) ((z + 3)  =  1/ u (u + 2) – 1/ 2u (1 + u/2) 
=
1/ 2u (1 – u/2 +  u2/4 -    u3
/8 + ……)
Replace
u  with z above:
1
/ 2(z + 1)  - ¼    + (z – 1)/ 8  -   (z
+ 1) 2 / 16 + ……
Now
take: 
  
Then
for the same series above, since ÷ z  + 1÷       <  
2    we require:  z  ¹  -1
WHY?
No comments:
Post a Comment