a) 0 < ÷ z ÷ < 3 and
b)    ÷ z  ÷      >  
3    
7z 2 + 9 z - 18 / z 3 - 9z = z (z + 9) + 18/ [z {z + 3) (z – 3) ]
=
A/ z  +      B/ (z + 3) + C / (z – 3)
7
z 2  + 9 z  - 18 
=  A(z + 3) (z – 3) + Bz (z – 3) +
Cz (z + 3)
For
z = 0: - 9A = -18 so that A = 2
For
z = 3:  18 C =  7(3)2 + 9(3) – 18 =  63 + 27 – 18 = 72
Then:
=
2/ z  + 1 / (z + 3) + 4/ (z -3)
Rewrite
as:
2/
z +  1/3 (1 / 1 + z/3) – 4/3 (1 / 1 –
z/3)
For
term 1:   ÷ z ÷    <   1
For
term 2 : ÷ z ÷    <   3
  
For
term 3:    ÷ z ÷    <   3
Expand
2nd and 3rd terms and expand using 1 / (1 – z) and
substituting:
2/
z + 1/3 (1 – z/ 3  +   z 2  / 32  +  …)
-  4/3 (1 + z/ 3 +   z 2  / 32  +  …)
Combining
Terms:
2/z
– 1 – 5z/ 32  +  3 z 2  / 33  +  …)
Which
series can be represented:
2/
z +  [ å¥ n = 0    (-1)
n – 4   / 3 n + 1  ] z 4     
For:
0  < ÷ z ÷   <   
3  
Now,
rewrite the original partial-fraction f(z) in the form:
2/
z + 1/ z (1 / 1 + 3/z) + 4/z ( 1 / 1 – 3/z)
Expand
2nd, 3rd etc terms using 1/ 1 – z:
Þ  2/ z + 
1/z (1 – 3/z  + 32  / z 2  +  
….)  + 
......+ 4/z (1 + 3/z + 32 / z 2 + …)
......+ 4/z (1 + 3/z + 32 / z 2 + …)
=
2/z  + 1/z  - 3/ z 2  +  32  / z 3  +  +…….
+ 4/z + 12/ z 2 + 36 / z 3 + …..
+ 4/z + 12/ z 2 + 36 / z 3 + …..
=
2/z +  [5/z + 9/ z 2  +   
45  / z 3  +  ………]
Which
can be represented in the form:
2/
z +   å¥ n = 0    3
n  (4 +  (-1)
n  ) /  z n + 1    
For:  ÷ z  ÷      >  
3    
2 comments:
2 years to late but the expansion si z^n not z^4 made a little typo in z<3
Thanks for the correction!
Post a Comment