1) Show the power series: å¥ n = 0   z n 
for which the series converges provided z < 1.
(I.e. if  ÷ z n
+1   /  
z n  ÷  <  k, for all k sufficiently large and k < 1
then:
å  z n  
converges absolutely.
For example, expanding the series terms:
å¥ n = 0   z n 
  = 1 + z  + z2 + z3 +…..
Let z = ½ :
å¥ n = 0   z n 
  =  1 + ½ 
+ (½) 2  + (½) 3
=   1 + ½ + 1/4  + 1/8 +     
……
So  since the sum is limiting as terms are added, not expanding,
we see the series converges absolutely.  
BUT this only obtains for all points INSIDE a circle of radius R =1, so
the radius of convergence is R =1.
2)Consider the power series:
å¥ n = 0   (z) n  / n!  
Show that the radius of convergence R = ¥
Apply the ratio test:
lim n ® ¥  
   [(z) n
+1   / n + 1 /   (z) n  / n ] = 
  lim n ® ¥ 
   a n  /  a n +1       =  n + 1 ® ¥  
as n tends to infinity, hence R = ¥
3) The Maclaurin series for the normal exponential function
f(z) = exp(z) is:
å¥ n = 0   (z) n  / n!  = 1 + z + z2
/ 2!  + z3 / 3!  +…..
If we now replace z by (-z) we get:
å¥ n = 0   (-z) n  / n!  = 1 -  z + z2 / 2!  -   z3 / 3!  +…..
Which is the Maclaurin series for exp(-z)
Then for radius of
convergence:  R = 1/L   =  1/0
= ¥
No comments:
Post a Comment