1) The
function: f(z) =  -1/ (z – 1) (z – 2)
b) Singular points are z = 1 and z = 2 since by inserting the respective values in the partial fraction form one will obtain infinities.
c)
If  the function is analytic in the
domains:
÷ z ÷    <  
1;   1   < ÷ z ÷   <   
2   and:   2  
< ÷ z ÷   <    ¥  
Draw
a sketch showing the different domains. 
d1
is for  ÷ z ÷    <  
1;   
 
d2
is for :   1   < ÷ z ÷   <   
2   
d3
is for:  2   < ÷ z ÷   <    ¥  
2)Find the Laurent series that represents the
function:
f(z)
=  z2  sin (1 / z2 )
in
the domain:  : 0   < ÷ z ÷   <    ¥  
We
have (from the hint): 
sin(z)
= z -  z3 / 3!  +  z5
/ 5!  ….. 
-  (-1) n- 1 z 2n
-1/  (2n -1)!  +
Then:
sin
(1/z) =  1/ z -    1/ z3 3!   +  1/
z5 5!   -  1/ +  z7
7!  +   
……..
And:
sin
(1 / z2 )  =  1/ z2    - 1/ z6 3!    +  1/ z 10
 5!    -
……..
whence (on substituting):
z2
 sin (1 / z2 )  =   z2
    [1/ z2    - 1/ z6 3!    +  1/ z 10
 5!    -
……..
=  1   
-   1/ z4 3!    +  1/ z 8
 5!     -   1/
z 12  7!      +  
…..
 
Which
can be written as 1 followed by a representative series, i.e.:
1  +  å¥ n = 1     (-1) n/  (2n + 
1)! z 4n
Check values 
for the term n = 2:
(-1) 2 =  1  and (2n +  1)!  =
(2(2) + 1)! = 5!
z 4n   =  z 4(2)  = 
8   
So term 2 in the series is: 1/ z 8  5!     
The
reader can check additional terms as he desires to see the series works!
No comments:
Post a Comment