No,
we’re not yet finished with these exotic mathematical denizens! We want to give
yet more examples, and especially showing different ways to obtain the Laurent
equivalent of different functions. 
Then:
(2u) 4 / 4! + …….
=  e 2  /  (z
- 1)3     +   2 e 2  /  (z
- 1)2      +   2 e 2  /  (z
– 1)  +  
4 e 2 / 3 + 2 e 2 / 3 (z – 1) + …….
4 e 2 / 3 + 2 e 2 / 3 (z – 1) + …….
Ex. (2):   f(z) =  z – sin z / 
z 3
sin(z)
= z -  z3 / 3!  +  z5
/ 5!  ….. 
-  (-1) n- 1 z 2n
-1/  (2n -1)!  +
Then:
z – sin z /  z 3     =  1/ 
z 3    [z - 
(z -  z3 / 3!  +  z5
/ 5!  ….. 
) ]  
 =  1/  z 3    [z3 / 3!   -  z5 / 5!    +   z 7
/ 7!  -   
……….
=   1/3!  -  z 2 / 5!     +   z 4 / 7!  -    z 6 / 9!   + ……..
Ex. (3)
Using
the sine series we can write:
sin (4z) / z 4     =  1/   z 4   [4z -    4z3 / 3!  +  4 z5
/ 5!  + 
……..]
=     4 /   z 3    -    43 / 3!  z  +   45  z  /
5!       +  
…..
= 4 z  -3    -  43
 z -1
/  3!   +   45  z  /
5!        +  
…..
Which
on inspection is found to have the form: 
å¥ n = 0    (-1)
n   4 2n+
1  z 2n -3  /   (2n +  1)! 
Check term number 3 (n = 2):
4 2n+ 1     = 4 2(2)+ 1      =     
45
z 2n -3  =  z 2(2) - 3      = z 1=  z 
(2n
+  1)!   =  (2(2) +  1)! 
= 5!
Then:  we get  45  z  / 5!        
A
removable singularity occurs at z = 0 so we expect the region of convergence to
be:
÷ z  ÷      >  
0    
Problems for Math Mavens:
Let
f(z) = exp (-1/z 2) /  z5
a)
Show the Laurent series can be written:  
å¥ n = 0    (-1)
n   /   n !  z 2n
+ 5    
b)Specify where the singularity would occur and the precise region of convergence
Challenge
Problem:
For über Math Mavens only –
Let
f(z) = 7 z 2  + 9 z  - 18 / 
z 3 -  9z
Find
Laurent series for the convergence regions: 
a) 
0  < ÷ z ÷   <   
3  and 
b)    ÷ z  ÷      >  
3   
(Hint:
Approach the function f(z) by resort to partial fraction decomposition) 
No comments:
Post a Comment