Tuesday, January 27, 2026

The Quantitative Formulation Of Nonlinear Alfven Waves: Part 2 a (Derived from two- fluid equations)

 We now look at the case of non-Linear Alfven waves derived from two- fluid equations:

 We use wave frame so that: / t  =  0

 Also:

1)    Continuity equation: / x (ns, Vs ) = 0 

2)    Momentum eqn.  Vs / x (Vs ) = qs, /  ms (E + v  x B)


Vs   Vs / x  =  qs, //ms  [E + V x B]

 

3)    / x  (B) = 4 p å qs, Vs  n s,

 

4)   / x  ·  (B) = 0

 

(5) / x  ·  (E) = 4 p å qs,  n s,


We consider first the solution in 1-dimension. Choosing the field to have a geometry such that:


B =  [ B 0 ,  B y  (x), B z  (x)]

And:   E =  (E(x), 0 , 0)

Vs    =   [Us (x),  Vs  (x) ,  Ws  (x)]

Assuming exact neutrality:   n i (x) =  n e (x)    =    N(x)

But:  E / x  =  0    So no E

We have then:

(i)   (ns,  U s ) / x  =  0     so:  ns U s   = const.   (Or:  Ñ · J  = 0 )

(ii) m s  U s  (d U s  / dx)    = qs,  (Vs  B z -  Ws B y )

(iii) m s  U s  (d V s / dx)    = qs,  (Ws  B 0 -  Us B z )

(iv) m s  U s  (d W s / dx)    = qs,  (Us  B y -  Vs B 0 )

 

Further:   Ui =  U e


dB y / dx  =   4 p å qs, Ws  n s

dB z / dx  =   - 4 p å qs, Vs  n s


Now multiply:    å ns      by Eqn. (ii)

Þ   å ns  ms Us   (d U s  / dx)    =    å n s qs, (Vs  B z -  Ws B y )


Þ  F  å ms (d U s  / dx)    =    å n s qs, Vs  B z    - å n s qs,  Ws B y


Then:   

F  m z  (dU  / dx)    =  - 1/4 p  B z (d B z / dx) - 1/4 p  B y (d By / dx)

 

Þ   d / dx  (F  U ) =  - 1/8 p   d/dx  (B z  2  +   By 2 )

 

F  U  +   (B z  2 +   By  2 ) /8 p     =    const.  = P

 

Where the first term on the left is the ram pressure and the 2nd term is the magnetic pressure.  This equation will be derived in the next instalment.

To be continued...

No comments: