Wednesday, July 12, 2023

An Introduction To Numerical Analysis (4): The Secant Method

 The secant method of numerical approximation basically is a further refinement of the Newton- Raphson method. We begin by taking the secant line joining   ( xo ,  f (xo) ) and  ( x1 f (x1)) for the curve shown below.  

Then we can write by the point-slope formula familiar to anyone who's taken Algebra II:

y= [f(x1) -  f (xo)]  (x -  xo) / [ x1 -  xo ]     +   f (xo)

And the root of this linear function is the value of x such that y = 0, or:

x =   x1 -  f(x1) { x1 -  xo / f(x1)  -    f(xo)}

This new value x is then used as  x2  to repeat the process, i.e. using x1  and x2 instead of  xo  and x1.   The iteration process is then continued on, e.g. for x3 , x4  etc. until sufficiently high precision is achieved.   This yields the general formula:

n   =   n-1   -  f(n-1) { n-1   -  n-2 / f(n-1)  - f(n-2) }


Suggested Problems:

Use the secant method to find an approximation to:

x 3  - x  - 1   =  0

Compare it with what you obtained using Newton's method

No comments: