Problems:
1) Recall t^A, found in Ex. 1 and let B =
(-1...1)
(1....0)
a) Find AB and thence: t^(AB)
b) Verify that: t^AB = t^B t^A
Solutions:
A =
(2...1)
(3...1)
t^A =
(2.....3)
(1.....1)
And let B =
(-1...1)
(1....0)
Then AB = A X B =
(a11 a12) (b11 b12)
(a21 a22) (b21 b22)
= [{(a11b11) + (a12b21)} --{(a11 b12)+ (a12 b22)} ]
[(a21b11) + (a22b21) } --{((a21 b12) + (a22 b22)}]
AB =
t^(AB) =
(-1....-2)(2.....3)
t^B =
(-1...1)
(1....0)
t^A =
(2.....3)
(1.....1)
Then: t^B t^A =
So that:
t^AB = t^B t^A
2) Find the trace of: R3(Θ) =
(cos(Θ)..........sin(Θ)..........0)
(-sin (Θ)......cos(Θ)...........0)
(0 ..................0..................1)
Solution:
Tr R3(Θ) = cos(Θ) + cos(Θ) + 1 = 1 + 2 cos(Θ)
No comments:
Post a Comment