Tuesday, January 17, 2023

Solution To Fourier Sine Transform Problem

Obtain the relevant expressions for  I2  if t < a and I1    if t = a, then the expression for all results (t> a, t = a, t < a) incorporated together.

Solution:

For t < a,

I1   = - pi (e iz (t-a) / 2 z )=   -ib

= - pi (e iz (t-a) / - 2ib )  =   p ( e b (t-a)  ) / b

For t =a:

e iz (t-a)  =  e 0

ð I1   = pi (1 / 2 z )=   pi (1/ 2ib) = p/ b

Then:   I1   =  p ( e -b ([t-a)]  ) / b

Similarly: I2   =  p ( e -b ([t+a)]  ) / b

Combining the results for: t>a, t< a, t =a:

I = ¼ Re [I1   +   I2 ] =

 ¼ [ e -b ([t-a)]  ) / b +  p ( e -b ([t+a)]  ) / b]

=  p /4b  ( e -b ([t-a)]  + e -b ([t+a)] )

No comments: