Obtain the relevant expressions for I2 if t < a and I1 if t = a, then the expression for all results (t> a, t = a, t < a) incorporated together.
Solution:
For t < a,
I1 = - 2 pi (e iz
(t-a) / 2 z )= -ib
= - 2 pi (e iz (t-a) / -
2ib ) = p ( e b
(t-a) ) /
b
For t =a:
e iz (t-a) =
e 0
ð I1 = 2 pi (1
/ 2 z )= 2 pi (1/ 2ib) = p/ b
Then: I1 = p ( e -b ([t-a)]
) / b
Similarly: I2 = p ( e -b ([t+a)] ) / b
Combining the results for: t>a, t< a, t =a:
I = ¼ Re [I1 + I2 ] =
¼ [ e -b ([t-a)] ) / b + p ( e -b ([t+a)]
) / b]
= p /4b ( e -b ([t-a)]
+ e -b ([t+a)]
)
No comments:
Post a Comment