1) (a) Sketch the catenary: y = 3 cosh (x/2 - ¼)
(b) If u2 is the parallel u2 =0.5 and h' = c / Ö(u 2) 2 - c2
Compute the mean curvature H if:
H = -½ (h' / [ u 2(1 + h' 2)1/2 ] + [h' / [ u 2(1 + h' 2)3/2 ])
Solution:
(b) The form is: f(x) = a cosh (bx - c)
Then from the graph: a= 3, b =1/2, c = ¼
h' = c / Ö(u 2) 2 - c2 = 0.25 /Ö(0.5) 2 - (0.25)2
h' = 0.25 /(0.5) - (0.0625)= 0.571
H = -½ (h' / [ u 2(1 + h' 2)1/2 ] + [h' / [ u 2(1 + h' 2)3/2 ])
= -½ (0.571 / [ 0.5 (1 + (0.571) 2)1/2 ] + [0.571/ [ 0.5 (1 + (0.571) 2)3/2 ]) = -0.87
c) K + h / 2H = k u
But: K = h = +1 So: k u = 2/ 2(-0.87) = -1.15
(2) Using a quantitative approach find a representation of the right helicoids which are isometric to a catenoid.
Hint: You may use: (u1) a cosh (x3 /a ) as the representation of the meridian of the catenoid.
Solution:
If (u1) a cosh (x3 /a ) represent the meridian of the catenoid then we can write;
x ( u1 , u 2 ) = (u 2 cos u2 , u 2 sin u2 , a cosh-1 (u2/ a)
ds2 = (u 1 )3/2 / (u 1) 2 - a2 (du1) 2/ a) + (u1)2(du2)3
Further: 1 + h' 2 = (u 1)3/2 / (u 1) 2 - a2
If we use the appropriate substitution the left- hand side of the preceding eqn. becomes:
h4 (u 1)2 / h2 [(u 1) 2 + c 2 ] - a2
Finally integrate, setting h = 1 and a2 - c 2 = k2 :
k ò Ö{((u 1) 2 + c 2)/(u 1) 2 (u 1) 2 - k2 } du1.
Which yields, provided c = a:
x ( u1* , u 2* ) = (u 2* cos u2* , u 2* sin u2* , cu2* )
Where each asterisked quantity (*) denotes an arc length, e.g. on S* which is the same as that for the inverse image on the surface S. Hence, enabling a length -preserving or isometric mapping. In this case, as the pitch increases (for c= a) we obtain the right helicoid. This shows that a catenoid, cut along a meridian, can be deformed into a right helicoid. See below:
No comments:
Post a Comment