Monday, September 12, 2022

Analyzing Dipole Radiation - Part 2 - Obtaining the Potential V(r, t)

 


                                      Sketch diagram for analysis of dipole radiation



The  use of a rectangular coordinate system (x,y,z) is again appropriate, as shown in the sketch above showing two test charges: +q and - q referred to an antenna of dimension S,  with position vectors indicated.  We can write:

q(+) =  q 0  cos w t

q(-) = - q 0  cos w t  

The dipole moment is then:

P =  q 0  S cos w t z^ = q S

The electrical potential in the first instance is expressed:  

VP = 

1/ 4 p εo  {q 0  cos w(t -  R + /c) /R +   - q 0  cos w(t -  R - /c/R -}

The law of cosines yields:

R+ 2  =   r 2  +  (S/2) 2   +   (r S/2) 2 cos q

=  2  +  S2/4  +  r S cos q

or:

R+ =  [2  +  S2/4  +  r S cos q1/2


For: r >> S  (Distance much larger than antenna dimension):

 S< <   rS (Then terms in  S2 can be neglected)

=> R+ =   [2  +  r S cos q1/2

 R+ =  [   +  r S cos q1/2


 R+=  r (1 +  S/ r cos q1/2

 =  r (1 +  S cos q/2 r)

Note the Trigonometric identity used to simplify expressions:

cos (A + B) = cos A cos B  sin A sin B

Where we let A =   w(t - r/c)  ,   B  =  s cos q/2c

Then: cos w(t - r/c) +  cos (cos q/2c)  =

cos w(t - r/c) cos (cos q/2c)      sin w(t - r/c) sin (cos q/2c)

We now substitute the above expression into  expression for V (r, t):

V (rq, t)   = 

1/ 4 p εo  [q 0/ r ( 1 +  S cos q/2 r) cos w(t - r/c) -  S cos q / 2c  (sin w(t - r/c)) - 

q 0/r ( 1 -  S cos q/2 rcos w(t - r/c) +  S cos q / 2c (sin w(t - r/c))]

Each term contains  q 0  and  1 / r so these can be factored out to get:

Also cos w(t - r/c)  cancels, as does cos q / 2c  (sin w(t - r/c))  So:

V (rq, t)   =

 q 0/p εo r [ s cos q / r (cos w(t - r/c)) - cos q / 2c  (sin w(t - r/c))]

But: q 0S =  P 0   and factor out cos q :  

V (r, t)   =  

P 0 cos q /p εo r [ cos w(t - r/c)/ r  -  w / c sin w(t - r/c) ]

Note:  As   w   -> 0   

V (r, t)   =  P 0 cos q /p εo r 2

But in general given the previous approximations, conditions, the potential for the dipole radiation field will be expressed:

V (r, t)   ~     -P 0 w /p εo  (cos q / r) sin w(t - r/c)


See Also:

No comments: