1) Find the Fermi sphere parameters: e F , v F and T F for He3 at absolute zero, viewed as a gas of non-interactive fermions. (The density of the liquid is 81 kg/ m 3).
Solution:
We first find the number of electrons per unit volume. (N/V)
N/ V =
6.020 x 10 26 atoms/ kmol (81 kg/ m 3)/ 3 kg/ kmol
(Why 3 kg/ kmol in denominator? Because the atomic weight = 3)
Then: N/ V = 1.625 x 10 28 atoms
The Fermi Energy, e F = ħ 2 / 2m [3 p2 N/ v] 2/3
Then:
e F = 6.81 x 10 -23 J
To get: v F , note: e F = ½ m (v F )2
v F = [2 e F / m]1/2 = 165 m/s
Finally, the Fermi temperature is found based on the fact it is tied to the energy (as the energy increases, the temperature increases. We have for the thermodynamic temperature:
Since T F = kB t
Then: T F = (e F)/ kB =
(6.81 x 10 -23 J) / (1.38 x 10 -23 JK-1 ) = 4.93 K
2 a) Show that (- ¶f / ¶ e) evaluated at the Fermi level (e = m) has the value (4 kB T) -1. Thus, the lower the temperature, then the steeper the slope of the Fermi-Dirac function.
Hint: Use f(e) = 1/ [exp (m - e)/ t + 1]
Solution:
We have:
f(e) = 1/ {exp (m - e)/ t + 1} = [exp (m - e)/ t + 1] -1
So: - ¶f / ¶ e =
- {- [exp (m - e)/ t + 1] -2 · 1/ t (exp (m - e)/ t)}
For e = m:
- ¶f / ¶ e = exp (e - e)/ t + 1] -2 · 1/ t (exp (e - e)/ t)}
= exp (0) / t + 1] -2 · 1/ t (exp (0) / t)} = 1/ t (2) -2
- ¶f / ¶ e = 1/ 4 t = 1/ (4 kB T) = (4 kB T) -1
3) Let e = m + d, show that: f(d ) = 1 – f( -d )
Hint: Let f(d ) = 1/ [exp (e- m )/ t + 1]
Solution:
If e = m + d, then: d = e - m
f(d ) = 1/ [exp (e- m )/ t + 1]
But: f( -d ) = 1/ [exp - (e- m)/ t + 1]
= 1/ [exp (m - e)/ t + 1]
And:
1 - f( -d ) = 1 - 1/ [exp (m - e)/ t + 1]
= [exp (m - e)/ t]/ [exp (m - e)/ t + 1]
= l exp (- e/ t) / l exp (- e/ t) +1
Since: l = exp (m / t)
Multiply numerator and denominator by using: [exp (e/ t)]/ l
l exp (- e/ t) (exp (e/ t)/ l) /[ l exp (- e/ t) + 1] (exp (e/ t) / l)
= 1/ [1 + 1/ l (exp (e/ t)]
Or: 1 - f( -d ) = 1/ [1 + exp -m (exp (e/ t)]
= 1/ [exp (e- m)/ t + 1]
But: f( -d ) = 1/ [exp (e- m)/ t + 1]
Therefore: f(d ) = 1 – f( -d )
No comments:
Post a Comment