1) Find the Fermi sphere parameters: e F ,  v F  and   T F for He3 at absolute zero, viewed as a gas of  non-interactive fermions. (The density of the liquid is 81 kg/ m 3).
Solution: 
We first find the number of electrons per unit volume. (N/V)
N/ V =  
6.020  x 10 26  atoms/ kmol (81 kg/ m 3)/ 3 kg/ kmol
(Why 3 kg/ kmol in denominator? Because the atomic weight = 3)
Then: N/ V =  1.625   x 10 28  atoms
The Fermi Energy, e F  =  ħ 2  / 2m   [3 p2 N/ v] 2/3 
Then:  
e F  =    6.81  x 10 -23  J 
To get: v F  , note: e F  =   ½ m (v F )2 
v F  =   [2 e F  /  m]1/2  =   165  m/s
Finally, the Fermi temperature is found based on the fact it is tied to the energy (as the energy increases, the temperature increases.  We have for the thermodynamic temperature:  
Since   T F =  kB t
Then:  T F =    (e F)/ kB   =
(6.81       x 10 -23  J) /  (1.38 x 10 -23 JK-1 ) = 4.93 K  
2 a) Show that (- ¶f / ¶ e)  evaluated at the Fermi level (e  = m) has the value (4 kB T) -1. Thus, the lower the temperature, then the steeper the slope of the Fermi-Dirac function.
Hint: Use f(e)  =  1/ [exp (m - e)/ t + 1]
Solution:
We have: 
f(e)  =  1/ {exp (m - e)/ t + 1} =   [exp (m - e)/ t + 1] -1
So:    - ¶f / ¶ e    =  
 - {- [exp (m - e)/ t + 1] -2 ·  1/ t  (exp (m - e)/ t)}
For e  = m:
- ¶f / ¶ e   =  exp (e - e)/ t + 1] -2 ·  1/ t  (exp (e - e)/ t)}
=  exp  (0) / t + 1] -2 ·  1/ t  (exp  (0)  / t)} = 1/ t  (2) -2 
- ¶f / ¶ e   =   1/ 4 t   =    1/ (4 kB T)   =    (4 kB T) -1
3) Let e =  m +  d,  show that: f(d  ) = 1 – f( -d )
Hint: Let f(d  ) =  1/ [exp  (e- m )/ t + 1]
Solution:
If e =  m +  d,    then:    d   =  e  -    m
f(d  ) =  1/ [exp  (e- m )/ t + 1]
But:  f( -d  ) =  1/ [exp - (e- m)/ t + 1]
 =  1/ [exp   (m - e)/ t + 1]
And:
1 -    f( -d  ) =  1 -   1/ [exp   (m - e)/ t + 1]
=    [exp   (m - e)/ t]/  [exp   (m - e)/ t + 1]
=  l exp (- e/ t) /   l exp (- e/ t) +1
Since:  l =   exp (m / t)
Multiply numerator and denominator by using:  [exp (e/ t)]/ l
l exp (- e/ t)  (exp (e/ t)/ l) /[ l exp (- e/ t) + 1] (exp (e/ t)
=  1/   [1 +   1/ l  (exp (e/ t)]
Or:    1 -    f( -d  ) =    1/ [1 +  exp   -m (exp (e/ t)]
=   1/ [exp  (e- m)/ t + 1]
But:    f( -d  ) =   1/ [exp  (e- m)/ t + 1]
Therefore:      f(d ) = 1 – f( -d )
 
No comments:
Post a Comment