Consider the function: f(z) = 1/ (z+ 1) ((z + 3)
a) Find a Laurent series for: 1 < ÷ z ÷ < 3
Solution: We first resolve the function f(z) by partial fractions, so:
f(z) = 1/ (z+ 1) ((z + 3) = ½ [1/ z + 1] - ½ [1/ z + 3]
÷ z ÷ > 1:
1/ 2 ÷ z + 1 ÷ = 1/ 2z (1 + 1/z)
= 1/ 2z [ 1 – 1/z + 1/ z2 + …….]
This is the principal part of the series.
Next, consider: ÷ z ÷ < 3, Then we write:
1/ 2 (z + 3) = 1/ 6(1 + z/3) = 1/6 - z/ 18 + z2 /54 + ……
This is the analytic part of the series.
So we just combine the two parts to get:
So we just combine the two parts to get:
f(z) = 1/ 2z [ 1 – 1/z + 1/ z2 + …….] + 1/6 - z/ 18 + z2 /54 + ……
b) Find the Laurent series for 0 < ÷ z + 1÷ < 2
Consider first: ÷ z + 1÷ > 0
We let (z + 1) = u then write:
1/ (z+ 1) ((z + 3) = 1/ u (u + 2) – 1/ 2u (1 + u/2)
= 1/ 2u (1 – u/2 + u2/4 - u3 /8 + ……)
Replace u with z above:
1 / 2(z + 1) - ¼ + (z – 1)/ 8 - (z + 1) 2 / 16 + ……
Now take:
Then for the same series above, since ÷ z + 1÷ < 2 we require: z ¹ -1
No comments:
Post a Comment