x1 = L1
sin f1
x1’ = L1 cos f1 f1’
y1 = L1
cos f1
y1’ = - L1 sin f1 f1’
V = mgL1 (1 -
cos f1)
T1
= ½ m( r q’ 2 ) = ½ m1(
L1 f1’ 2 ) and
T2 = ½ m2( x2’ 2 + y2’ 2)
Where:
x2
= L1
sin f1 + L2 sin f2
y2
= L1
cos f1 + L2 cos f2
x2’ = L1
cos f1 f1’ + L2 cos f2 f2’
y2’ = L1
sin f1 f1’ - L2 sin
f2 f2’
Then:
T2 = ½ m2(L1 2 cos 2 f1 f1’ 2 + L2 2 cos 2 f2 f2’ +
2L1 cos f1 f1’ L2 cos f2 f2’ + L1 2 sin 2 f1 f1’ 2 +
L2 2 sin 2 f2 f2’ + 2L1 L2 sin f1 sin f2 f1’ f2’ )
T2
= ½
m2(L1 2 f1’ 2 + L2 2 f2’ 2 + 2L1 L2 cos (
f2 - f1) f1’ f2’
Therefore:
L
= ½
m1 L1 2 f1’ 2 +
½ m2( L1 2 f1’ 2 + L2 2 f2’ 2 )
+
m2 L1 L2 cos ( f2 - f1) f1’ f2’ – m1 g
L1 (1 - cos f1 ) -
m2
g [L1 (1 - cos f1 ) + L2
((1 - cos f2 )
2) a)
The
Lagrangian is L = T – V
L
= ½ m(
r” 2 + r
q’ 2 + z’
2 ) - mg
z
Applying constraints and eliminating one coordinate (z) [Rem: z = ar]
L
= ½ m( r’ 2 (1 + a 2 )+ r 2 q’ 2 ) - mg
(ar)
b)
The
new Lagrange’s equations are then:
i) m
r’’ 2 (1 + a 2 ) - m r 2 q’ 2 + mg
a = 0
And:
ii) m r’’ (1 + a 2 ) - ℓ / mr2 + mg a = 0
Rem: angular momentum: ℓ =
mr2 dq/ dt
= mr2 q’
c)Using undetermined multiplier l:.
Write: m r’’ - m r 2 q’ 2 = l a
Where ¶ f / ¶ r = a
d/dt
[m r 2 q’ 2 ] = ℓ
m
z’’ + m g
= l
We see l is the generalized
force associated with z-component
But
in terms of radial coordinate r:
z
= ar, so that:
F
r + F
z = const.
(Normal force exerted by cone’s side requires: F
r = - F z )
z
= ar, so z’’
= ar” then:
m z’’ + m g
= m (ar”) + mg =
m(ar” + g)
l = F z = m z’’ + m
g = m(ar”
+ g)
Then
force acting along the radial
direction is :
F r =
- m(ar” + g)
No comments:
Post a Comment