1) The
tick rate of a clock is found to slow from 10-24 sec to 10-10 sec when placed
inside a strong gravity well. Find the amount by which the frequency is
redshifted.
Solution:
The
difference in frequency must be proportional to the elapsed time so:
Dn/ n  = (n2 - n1)/ n 
=  Dt/ t »  GM [1/r1 - 1/r2]
Or
specifically for our purposes:
Dn/
n  = (n2 - n1)/ n 
=  Dt/ t
Dt
/ t    = 
[10-10 s -  10-24
s]/ 10-24 s »  10-10 / 10-24  » 
10 14
Dn/
n  =   10 14  
Dn  »  n (10 14 )    
2)
Using Einstein’s relation for the deflection of starlight in a strong
gravitational field:
a  =   ò - p/ 2  p/ 2   k M/ r2   cos q ds
Show that this would actually be equal to: a  =  2 F/  c2
Where
F is the gravitational
potential.
Solution:
The diagram for reference is:

Rewrite:  q  =    (k
M/ r2 )  1/ c2
ò - p/ 2  p/
2   cos q ds
q   =    (k M/ r2   ) 1/ c2  ò - p/ 2  p/ 2   cos q ds  =   
(k
M/ r2   )  1/ c2  [ sin q] -
p/ 2  p/ 2     = 
 (k M/ r2  
)  1/ c2    [sin p/ 2 
-  sin  (-p/ 2)] = 2 k M/  c2 r2   
So: q  = 2k M/ c2  D  =  
2GM/ c2  D
Note: The triangle simply shows the relationships
of distances r, s, and D with respect to the
center of the body of mass M.  Distance s
is along the path traveled by the light ray whose bending is given by angle a, and simply shows the
ray at
a right angle to radial distance D.  It should also be understood that the formula
also calls for a negative version of the triangle, defining an angle θ that theoretically varies from – 90º
to 0º to + 90º.
The final version or result actually only makes
sense by a change of variable in the integral from s to q, thereby obtaining;
q   =    (G
M / 
D
)  1/ c2
ò - p/ 2  p/
2   cos q dq
= 2GM/ c2  D
Where we recognize: F =  G M /  D
As the gravitational
potential. Then we can actually rewrite Einstein’s equation as:
 q 
=  2 F/  c2
 
No comments:
Post a Comment