1) Take the The 7-adic value for each side;
[A]7 = [14 - 1/7]7 = ç[2 x 7]7 - 1/[1 x 7]7 ç
= ç 1/7 - 7 ç= 6 6/7 = 48/7
[B]7 = [1/7 - 21]7 = ç1/[1 x 7]7 - [3 x 7]7
= ç7 - 1/7 ç = 6 6/7 = 48/7
[C]7 = [21 - 14]7 = ç 3 x 7] 7 - [2 x 7]7 ç= ç1/7 - 1/7ç7 = [0]7 = 1
From these calculations of p-adic (7-adic) absolute values we find:
side A = side B = 48/7,
Hence in the p-adic format the triangle is isosceles.
(2) Find the value of the sum S for:
S = 1 + 7 + (7)2 + (7)3 + (7)4 + (7)5 + ....
Rewrite the sum (multiplying both sides by 7):
7S = 7 + (7)2 + (7)3 + (7)4 + (7)5 + (7)6....
Subtract the lower form from the upper, viz.:
S = 1 + 7 + (7)2 + (7)3 + (7)4 + (7)5 + (7)6....
-7S = 7 + (7)2 + (7)3 + (7)4 + (7)5 + (7)6....
--------------------------------------------
S - 7S = 1 (all other top and bottom terms cancel)
whence:
-6S = 1 and therefore, S = - 1/6
(3) This is straightforward. Let N be the new irrational and equal to S' where S' is a variant sum derived from S, i.e. by excluding all even-exponent terms in (7), such that:
N= S’ =
7 + (7)3+ (7)6 + (7)9 + (7)12 + (7)15 + .........
WHY does this answer qualify?
No comments:
Post a Comment