Friday, January 2, 2026

The Quantitative Formulation Of Nonlinear Alfven Waves: Part I Using MHD Eqns.

 In this post I show a quantitative formulation of nonlinear Alfven waves.    We begin with the standard equations of magnetohydrodynamics (MHD):

1)    ¶r/ t  +  Ñ ·(r v) 0

      2) r v / t  +  r(v·Ñ )v =   J X B - Ñ p


      3)  E  +  v x B   =  0

      4) P/ rγ  = const.

 (Where the exponent for density in (4) is the ratio of specific heats)Also include two of the Maxwell equations:

5) Ñ x E  =  - B /


 6) Ñ x B = m 0  J  

From (3) and (5) We get:   Ñ x (v x B)  =  B /

Or:  Ñ X  (Ñ X B) =   (B ·Ñ  ) v  -   (v·Ñ)  B   - B (Ñ ·v ) 

Assuming incompressibility: (Ñ·v )  =  0

Then:   ¶r/ t  +  v·    +  r Ñ v =  0

(N.B.  For an incompressible flow dr / dt = 0  and r is constant along a stream line.)

Introduce a fluctuation such that: B  =  B 0  +  b

Where:  b >  B 0 

Step II.  

Assume  B 0    = const., also assume: r   = r 0  =  const.  (uniform plasma)

Then:  (B 0 ·Ñ ) v   - b / t   =  (v·Ñ)b -  (b ·Ñ  ) v 

 Now sub substitute equation (6) into (1):

r v / t  +  r(v·Ñ )v =   1/m 0   ( Ñ x B) x B -  Ñp

B x (Ñ x B)  =   ½ Ñ 2   -   (B ·Ñ  ) B 

=   ½ Ñ (2 B 0 ·b) + ½ Ñ 2   - (B 0 · Ñ ) b – (b · Ñ ) b

Combine last 3 terms:

 ½ Ñ 2   - (B 0 · Ñ ) b – (b · Ñ ) b  =

 Ñ ( B 0 ·b) - (B 0 ·Ñ ) b + b x (Ñ  x  b)


Use the momentum equation:

r v / t  +  r (v·Ñ )v + 1/m 0  Ñ (B 0 ·b) =

1/m 0  (B 0 · Ñ ) b  - 1/m 0  b  x (Ñ  x  b)  Ñp

 Now apply the identity:

B x (Ñ x B)  =   ½ Ñ 2   -   (B ·Ñ  ) B 

 

à    1/m 0 r  (B 0 · Ñ ) b  - v / =

 1/m 0 r Ñ (B 0 ·b) + 1/m 0 r  x (Ñ  x  b) 

+   1/ r   Ñp   +   Ñ v 2 /2  -   v  x (Ñ ·v)


Whence we arrive at two nonlinear equations:


(A)           ( B 0 · Ñ ) v -    b / t  =  (v·Ñ )b  -  (b·Ñ )v 

(B)           1/m 0 r  (B 0 · Ñ ) b  - v / t  = 1/m 0 r  b x (Ñ  x  b)  -  v x (Ñ  x  v)  + 1/ r   Ñ [(p +  1/m ( B 0   ·b)]  + Ñ v 2 /2 


Step 1b towards a solution requires noting the relation of v to b in the preceding equations. 

Then:  v  =  +   b/ Ö mr 0

This leads to Step (2), substituting v into the nonlinear equations (A) and (B).


1/ r 0   Ñ [(p +  1/m ( B 0   ·b)]  + Ñ ( b 2 /2 mr 0  )  =


1/ r 0   Ñ [(p +  1/m ( B 0  b)  + b 2 /2 m 0  


=   1/ r 0   Ñ [(p +  1/ 2m ( B 0  + b) 2  -  B 0  2 /2 m 0  ]

 

Note that a key part of the solution is the pressure balance condition:


P +  B 2 /2 m 0    = const.

Since Pr - g  = const.,  then r is constant then P is constant.

à   B 2 =  const.,   b 2  = const. 

 This means that nonlinear Alfven waves must be circularly polarizedWe have for the phase velocity:

 v f     +  B 0 / Ö m 0 r 0

i.e.   For  v  =  +  b/ Ö m 0 r 0

Then if  B 0 , b  are parallel the directions of propagation must be anti-parallel.


Suggested Problem:

Show that:   f     =  +  B 0 / Ö m r 0

Hint: Check solutions for dz/dt.

Consider: b =  b 0  f (z  -   v f   t)

And:  v f      >   0

 Let:  x =    (z  -   v f   t)

0 =   dz/dt   - v f          And:    v f       = dz/dt  

You will also need the following partials:

b / z ,   b / t, ¶r / z  and   b / x


See Also:


No comments: