In this post I show a quantitative formulation of nonlinear Alfven waves. We begin with the standard equations of magnetohydrodynamics (MHD):
1) ¶r/ ¶t + Ñ ·(r v) = 0
2) r ¶v / ¶t + r(v·Ñ )v = J X B - Ñ p
3) E + v x B = 0
4) P/ rγ = const.
5) Ñ x E = - ¶B / ¶ t
6) Ñ x B = m 0 J
From (3) and (5) We get: Ñ x (v x B) = ¶B / ¶ t
Or: Ñ X (Ñ X B) = (B ·Ñ ) v - (v·Ñ) B - B (Ñ ·v )
Assuming incompressibility: (Ñ·v ) = 0
Then: ¶r/ ¶t + v·rÑ + r Ñ v = 0
(N.B. For an incompressible flow dr / dt = 0 and r is constant along a stream line.)
Introduce a fluctuation such that: B = B 0 + b
Where: b > B 0
Step II.
Assume
B 0 =
const., also assume: r = r 0 = const.
(uniform plasma)
Then: (B 0 ·Ñ ) v - ¶ b / ¶t = (v·Ñ)b - (b ·Ñ ) v
Now sub substitute equation (6) into (1):
r ¶v / ¶t + r(v·Ñ )v = 1/m 0 ( Ñ x B) x B - Ñp
B x (Ñ x B) = ½ Ñ B 2 - (B ·Ñ ) B
= ½ Ñ (2 B 0 ·b) + ½ Ñ b 2 - (B 0 · Ñ ) b – (b · Ñ ) b
Combine last 3 terms:
½ Ñ b 2 - (B 0 · Ñ ) b – (b · Ñ ) b =
Ñ ( B
0 ·b) - (B 0 ·Ñ ) b + b x (Ñ x b)
Use the momentum equation:
r ¶v / ¶t + r (v·Ñ )v + 1/m 0 Ñ (B 0 ·b) =
1/m 0 (B
0 · Ñ ) b - 1/m 0 b x (Ñ x b) - Ñp
Now apply the identity:
B x (Ñ x B) = ½ Ñ B 2 - (B
·Ñ ) B
à 1/m 0 r (B 0 · Ñ ) b - ¶v / ¶t =
1/m 0 r Ñ (B 0 ·b) + 1/m 0 r x (Ñ x b)
+ 1/ r Ñp +
Ñ v 2 /2 -
v x (Ñ ·v)
Whence we arrive at two nonlinear equations:
(A) ( B 0
· Ñ ) v - ¶b / ¶t = (v·Ñ )b - (b·Ñ )v
(B) 1/m 0 r (B 0 · Ñ ) b - ¶v / ¶t = 1/m 0 r b x (Ñ x b) - v x (Ñ x v) + 1/ r Ñ [(p + 1/m 0 ( B 0 ·b)] + Ñ v 2 /2
Step 1b towards a solution requires noting the relation of v to b in the preceding equations.
Then: v = + b/ Ö mr 0
This leads to Step (2),
substituting v into the nonlinear equations (A) and (B).
1/ r 0 Ñ [(p + 1/m 0 (
B 0 ·b)] + Ñ ( b 2 /2 mr 0 ) =
1/ r 0 Ñ [(p + 1/m 0 (
B 0 b) + b 2 /2 m 0
= 1/ r 0 Ñ [(p + 1/ 2m 0 ( B 0 + b) 2 - B 0 2 /2 m 0 ]
Note that a key part of the solution is the
pressure balance condition:
P + B 2 /2 m 0 = const.
Since Pr - g = const., then r is constant then P is constant.
à B 2 = const., b 2 = const.
This means that nonlinear Alfven waves must be circularly polarized. We have for the phase velocity:
v f = + B 0 / Ö m 0 r 0
i.e. For v = + b/ Ö m 0 r 0
Then if B 0 ,
b are parallel the directions of
propagation must be anti-parallel.
Suggested Problem:
Show that: v f = + B 0 / Ö m 0 r 0
Hint: Check solutions for dz/dt.
Consider: b = b 0 f (z - v f t)
And: v f > 0
Let: x = (z - v f t)
0 = dz/dt - v f And: v f = dz/dt
You will also need the following partials:
¶b / ¶z , ¶b / ¶t, ¶r / ¶z and ¶b / ¶x
See Also:
No comments:
Post a Comment