1) Write out in long form the full sum (all
terms) for the interval ds2 = g mn dx m dx n
Solution:
We write the interval: ds2
= g mn dx m dx n
= g 11
dx12 + g 22 dx22 + g 33 dx32 + g 44 dx42
+ 2
g 12 dx1 dx2 + 2
g 13 dx1 dx3 + 2
g 14 dx1 dx4
+ 2
g 24 dx2 dx4 + 2
g 34 dx3 dx4 + 2
g 41 dx4 dx1
+ 2
g 42 dx4 dx2 + 2
g 43 dx4 dx3
2 (a)Using
the appropriate relations, estimate the density of the universe at a time 0.01 second after the Big Bang
Solution:
a) The density is expressed:
r(t)
= 3/ 8 p
G t 2
Where
G = 6.6726 × 10−11 m3s−2kg−1
t
= 0.01 s
r(t) = 3/ 8 p [6.6726 × 10−11 m3s−2kg−1](0.01s) 2
r(t)
= 1.78
x 10 13 kg/ m3
b)
Repeat your computation if the Hubble constant is found to be H = 100 km/
sec/Mpc.
The
result is unaffected because r(t) does not depend on H, the Hubble constant.
No comments:
Post a Comment