In Plasma Physics' comprehensive PH D exams, one 's first problem generally starts with asking for the solution of the 1D Vlasov-Boltzmann equation:
¶ f/ ¶ t + v  · Ñ x f +  v'  Ñ v f = 0
A time-independent solution is generally required and I show here how to proceed. Assuming constants of the motion, then df/dt =0, so we have these conditions for the zero order Vlasov equation:
i) f = f o + f 1
ii) E =   E o  + E 1
iii) B=   Bo  + B1
 (¶ f/ ¶ t)c     =  0
Then we can write:
v Ñ x   f o + q/ m (E o + v x Bo ) · Ñ v  f o  =  0
The total derivative  of   f o following the zero order or unperturbed orbit is:
(d f o / dt) o  = 0
For the first order equation we have:
¶ f 1 / ¶ t  +  v Ñ x  f o + q/ m ( E o + v x Bo ) · Ñ v  f 1  
= - q/ m ( E 1 + v x B1 ) · Ñ v f o
Þ   
( d f 1  / dt ) o   =   - q/ m ( E 1 + v x B1 ) · Ñ v f o
We now need to specify the zero order orbit in phase space, viz.
X' (t) = V (t)
V (t) =    q/ m [F 0 (X, t) + V (t)  x B 0..(X, t) ]
Then:   X(t') =  x(t) +  ò t1  t  X(t'') dt''
 V(t') =  v(t) +  ò t' t  v(t'') dt''
We need to follow the prescription to solve for  f 1  by integrating both sides of the earlier boxed equation, e.g.
 ò t-¥    ( df 1 / dt ) o   =  ò t-¥   RHS dt'   (zero order orbit)
This leads to the general solution of the linear Vlasov equation:
 f 1  (x, v, t) =  f 1 [X(t'), V(t'), t' =  (-∞)] =
- q/m ò t-¥ dt{E 1 [X(t'), t'] +  V(t') x  B 1[X(t'), t'] · Ñ v f 0
Suggested Problem:
Show that:
Ñ x · v = 0   and:  Ñ v · (E  + v x B )  = 0
And write the resulting partial differential equation.
No comments:
Post a Comment