The problems again:
1) For the triangle in Fig. 2 (July 8 post), use 7-adic absolute values applied to the sides of the triangle, thereby compute: A, B and C and show it is isosceles
Solution:
[A ] 7   =  [14 - 1/7] 7   =  abs {[2 x 7 ] 7   -  1/[1 x 7] 7 }
=   abs [1/7 - 7]  =   6 6/7   =  48/7
[B ] 7   =  [1/7 -  21] 7   =   abs {1/ [1 x 7 ] 7   -  [3 x 7] 7 }
=   abs [1/7 - 7]  =   6 6/7   =  48/7
[C ] 7   =  [21  -   14] 7   =  abs {[3 x 7 ] 7   -  [2 x 7] 7 }
= abs[1/7 - 1/7]  7 =    [0 ] 7   = 1
From these calculations of (7-adic) absolute values we find side A = side B = 48/7. Hence in the p-adic format the triangle is isosceles.
2) Find the value of the sum S for:
 S = 1 + 7 +  (7) 2    + (7) 3   + (7) 4  + (7) 5  + .......
 Rewrite multiplying both sides by 7:
7 S =  7 +  (7) 2    + (7) 3   + (7) 4  + (7) 5  + (7) 6  + .......
Subtract the last form from the previous one:
    S = 1 + 7 +  (7) 2    + (7) 3   + (7) 4  + (7) 5  + .....
- 7 S =  7 +  (7) 2    + (7) 3   + (7) 4  +    (7) 5  +  ..
S - 7S = 1 (All other top and bottom terms cancel)
Whence:
Whence:
-6S = 1 and therefore, S = -1/6
3) Using (2) as written, "invent" a new irrational number based on the p-adic form.
3) Using (2) as written, "invent" a new irrational number based on the p-adic form.
The most direct way to invent a new p-adic is to employ the same 7-adic form and simply increase powers in a slightly different way..
Then let the new irrational be S'  where S' is a variation of S such that:
S'  =   (7) 3   + (7) 6  + (7) 9  +   + (7) 12  + (7) 15  +.....
Hence, the new irrational S'  is obtained merely by changing the sequence of the powers of 7.  
No comments:
Post a Comment