Friday, September 12, 2025

Examining Aspects Of The Klimontovich Equation Used In Plasma Physics

Note 1: The Dirac delta form of the Klimontovich equation 

Ni  (x, v, t) =  d  [x  -  x (t)]  d  [v   -  v (t)] 

refers to the density at a given time for a single particle, using the  d - function.

Recall here:  


An important property of this function is:

ad (a  - b) =   bd (a  - b)  

Note 2: In the 6D phase space, the Klimontovich equation reformulated as conservation of N (e.g. dN/dt = 0) is written:

  N(x, v, t)/  t   +   Ñ x N + F/m · Ñ v  N  =  0

Where:  Ñ x  =  (  y  z ),   Ñ v = ( vx  vy  vz )

This equation is made equivalent to Newton's equations for all particles in the plasma, i.e. by the appearance of  F/m   in the 3rd term.   This is just Newton's 2nd law in terms of v' (e.g. dv/dt), the acceleration.

Note 3. To derive the Boltzmann equation from the Klimontovich equation, we first do an ensemble average of N:

<N>  =  f (x, v, t)   and N  =   f  +    dN

E =   <E> +  dE   And:   B =   <B> +  dB

Now substitute N  =   f  +    dN  and  F/m = (E + v x B) into the 6D phase space   Klimontovich equation to get:

 f  t  +  < dN>/  t +   · Ñ x  f o +  v X dB · Ñ x dN> +

 q/ m ( <E> +  dE + v x <B> ) · Ñ v  f  Ñ v  dN  =  0

Þ   

 f /  t  +  v Ñ x  f  + q/ m ( <E>  + v x <B>) · Ñ v  f =

q/ m ( <d· Ñ dN>  - q/ m <v dÑ dN>


I.e. the Boltzmann eqn. in plasma physics

Note the presence of the perturbed quantities:

N  =   f  +    dN

E =   <E> +  dE

<B> +  dB

gives rise to the collision term in the Boltzmann equation.    

The Klimontovich equation is basically an exact equation for the time evolution of a plasma obtained by taking the time derivative of the density N x. Written out in full:

  N x(x, v, t)/  t =

  - å No i=1   X·Ñ d [x  -    Xi (t)]d [x  -   Vi (t)] -

å No i=1   V·Ñ v  d [x  -    Xi (t)]d [x  -   Vi (t)]

No comments: