Thursday, August 28, 2025

Solving More Difficult Partial Differential Equations (Part 5, Sec. iii)

 Look at the condition u(x,y,0) =

 T o  xy (x - a) (y - b)

Then:

 å¥ n=1  å¥ m= 1 a nm sin (np/ a) x sin  (mp/ b)

Suppose a function f(x, y) which is periodic of period 2

Consider y fixed and suppose the function has the Fourier Series expansion;

f(x, y) =   å¥ n=o [a (y) cos nx + b(y) sin nx]

Suppose in addition that a(y) and b(y) have Fourier series expansions, e.g.

a(y) = å¥ n=o [a nm cos ny + b nm sin ny]

And:

b(y) = å¥ m=o  (g nm cos my + d nm sin ny]

Substitution of a n (y),  b n (y) into series for f(x,y) results in terms of the form:

cos nx cos my, cos nx sin my, sin nx cos my, sin nx sin my

Hence:

f(x, y) = å¥ n=o å¥ m=o  a nm (cos nx cos my) + b nm (cos nx sin my)  +

c nm (sin nx cos my) +   d nm (sin nx sin my)

Note that the preceding is a double Fourier series.

This brief diversion enables us to continue our treatment as follows, so writing:

ò p -p  f(x,y) sin ax dxp å¥ m=1   c acos my + p å¥ m=1  d asin my

Next, multiply both sides by sin by and integrate, i.e.

Which yields:

ò p -p   [ò p -p  f(x,y) sin ax dx] sin by dy

Þ

å m  ò p -p  d asin by  sin my dy   =  d ab

Which tells us:

 d ab   =   1/ p 2  ò p -p   [ò p -p  f(x,y) sin asin by dx dy

Similarly:  

a ab   1/ ò p -p   [ò p -p  f(x,y) cos ax cos by dx dy

b ab   1/ ò p -p   [ò p -p  f(x,y) cos ax sin by dx dy

c ab   1/ ò p -p   [ò p -p  f(x,y) sin ax cos by dx dy


And further:  

d n0 =  d 0m   =    c 0m  =    b n0


Now take:

ò p -p   [ò p -p  f(x,y) sin ax dx dy =  p (2 p c a0)

c a0   1/ 2p  ò p -p   [ò p -p  f(x,y) sin adx dy

And:

b 0b   =   1/ 2p  ò p -p   [ò p -p  f(x,y) sin by dx dy


Using the preceding we may write:

 1/ 2p  ò p -p   [ò p -p  f(x,y) cos adx dy =  a a0


Similarly:

ab   1/ 2p  ò p -p   [ò p -p  f(x,y) cos by dx dy 


To get  a a0:    Take:  ò p -p  f(x,y)  dx 

2p å¥ m=0   a 0cos my  + 2p å¥ m=0   b 0sin my  etc.

If f(x,y) is an odd function in x and y then:

a oo =  a 0m   =  a nm  =    b 0m  =    b nm=    c no  =  c nm  = 0

The series then reduces to:

奠n=1  å¥ m= 1   d nm sin nx sin my

And:

d nm   = 4/p 2  ò p -p   [ò p -p  f(x,y) sin nx sin my dx dy   {if f(x,y) odd




No comments:

Post a Comment