Thursday, August 14, 2025

More Plasma Physics: Looking At Nonlinear Electrostatic (BGK) Waves (Part II)

 We combine equations (a), (b) and (c) from end of previous post to obtain an equation for  ns  in terms of:  vso ,     n so   and  q s j .

Then:

n s  =  n so  vso / vs

And obtain   vs  to substitute into the preceding:

vs  =  Ö (vso 2   -    2q s j  /m )

Þ

n s  =  n so  vso /Ö (vso 2   -    2q s j  /m 

Yielding same result as previous method.

Now, assume:   n so  =  n o

Then: 

d 2jd x2    =    

p  n e (e – i) [(1/ Ö 1 + 2e /m e veo2    -   (1/ Ö 1 + 2e /m i vio)

 =    -   ¶ V( j)  j

Where V( j)  is the pseudo potential or Sagdeev potential,

 On integrating:

V( j = 

p n o { me v eo 2 (Ö (1+ 2e j/me v eo )  +  mi vio Ö 1 – 2 e j)/ mi vio )

And:  me v eo 2 =   mi vio   = const.

The wave speed is fixed with respect to the relative motion of the electrons, ions.  This allows a determination of the wave speed, i.e. we look for a class of nonlinear waves which satisfy this equality. (This leads to the "BGK" waves.)

In pursuing shock solutions-solitons it is customary to make the above non-dimensional to simplify it. To that end, one can use the non-dimensional constant:

 F = e j/ Te

 And:   x =  x/ le 2    where    le  = v eo  we Ö(2)

Then:   2 F/ d x 2  =   exp (F) -  1Ö(1 – (2 e F)/ (M )2  =    -   y j 

Which is the dimensionless Poisson equation

Where:   Y  =  exp (F) - 1/ Ö(1 – (2 e F)/ M 2)  +  C

 One requires for the solution:

1)  y  (0)  =  0       Þ    C 1 =  1 +  n ot  +  2/3   F max n or 

2) y  (F max ) =  y II (F max  )  Þ    C 1 =  C2

 3) y " (0)  <  0   Þ     2   > n ot  / 1 +  n or /2F max  

4) y (F max ) =    0  

Þ 

 1 - exp (F) +   n ot  2 (1 -  Ö(1 – (2 e F)/ M 2)  +  2/3   F max n or = 0

(Also:   n ot    +   n or   =   1)

5) y II (F)   >   0

I.e. One solves for y II (F)  =   0  over:

F min   <  F  <   F max      And seeks a monotonic function

For reference, a sketch of the graph of the relevant potentials is given below which in terms of the dimensionless Poisson solutions can be regarded as the shock profile:




The maximum  V( j) is limited by k, the input constant related to the streaming speed vs .  This type of potential is able to support a wave train solution only. If the potential is symmetric the wave form will be completely symmetric i.e. like a sine wave of j( x)  vs. x.

We next revisit the equation:

d 2jd x2    =    

p  n e (e – i) [(1/ Ö 1 + 2e /m e veo2    -   (1/ Ö 1 + 2e /m i vio)

And take:

ò   (n) x   2d jd x  Þ 

d/dx (d jd x ) 2    =  

p  n 2k  d/dx [Ö 1 + 2e /k    -   (1/ Ö 1 -  2e /k )]


ò   d j[Ö 1 + 2e /k    -   (1/ Ö 1 -  2e /k )]  =   x + 

And  x =   f (k, j )

The preceding is a sketch of one particular type of BGK wave with the wave train form of solution that can only support a cold streaming plasma.


Next:  Case 2 - Application to ion-acoustic solitons and shocks




No comments: