We continue with previous problem but change the conditions to have a very long rod such that: -oo < ℓ < + oo (i.e. no end conditions).
Here:
u (x, 0) = f(x) ( -oo < ℓ < + oo )
Assume again:
u(x, t) = X(x) T (t) But u(x,t) ≠ 0
T' / c 2 T = X''/X = const.
So: X(x) = A cos ( r x) + B sin (r x)
T(t) = a exp (- c 2 r 2 t )
Then: XT =
A cos ( r x) + B sin (r x) exp (- c 2 r 2 t ) set a = 1
This leads us to write;
u(x, t) = ò ¥o [A cos ( r x) + B sin (r x)] exp (- c 2 r 2 t ) dr
The preceding allows the rod to be continuous instead of discrete (i.e. n p /ℓ)
Analogously:
u (x, 0) = f(x) = ò ¥o [A cos ( r x) + B sin (r x)] dr
Where:
A (r) = 1/p ò ¥-¥ f(w) cos ( r w) dw
B (r) = 1/p ò ¥-¥ f(w) sin ( r w) dw
Writing solution in more compact form:
u(x, t) = 1/p [ò w o [ò ¥-¥ f(w) cos ( r w) dw cos (rx) +
ò ¥-¥ f(w) sin ( r w) dw sin (rx)] exp (- c 2 r 2 t ) dr
note that each term in the integral involves f(w), which can be factored out.
Use trig identity:
cos ( r w) cos (rx) + sin ( r w) sin (rx) = cos r (x - w)
Then:
u(x, t) = 1/p [ò w o [ò ¥-¥ f(w) cos r (x - w)exp (- c 2 r 2 t ) dw dr
or:
u(x, t) = 1/p [ò w o [ò ¥-¥ f(w) cos r (x - w)exp (- c 2 r 2 t dr) dw
This can be written in definite integral form, using:
s = c r Ö t b = (x - w)/ 2c Ö t
And using the definite integral:
ò ¥o [exp (- s 2 ) cos 2bs ds = Ö p/ 2 {exp (- b 2 ) }
But: 2bs = [2 (x - w)/ 2c Ö t ] c r Ö t
So the final solution can be written:
u(x, t) = 1/2c Öp t ò ¥-¥ f(w) exp (- x - w) 2/ 4 c 2 t dw
No comments:
Post a Comment