Thursday, July 10, 2025

Solving Difficult Partial Differential Equations (Pt. 3) Extension Of Problem Conditions

 We continue with previous problem but change the conditions to have a very long rod such that:   -oo  <      <   + oo   (i.e. no end conditions).

Here:

u (x, 0) = f(x)  (  -oo  <      <   + oo )

Assume again: 

u(x, t) = X(x)  T (t)     But u(x,t)  ≠  0


T' /    T    =    X''/X  = const.


So:  X(x) = cos ( r x)  +  B sin  (r x) 

T(t) = a exp (-  r 2 t 

Then:  XT =

cos ( r x)  +  B sin  (r x) exp (-  r 2 t )      set a = 1

This leads us to write;

u(x, t) = ò ¥o     [cos ( r x)  +  B sin  (r x)] exp (-  r 2 t ) dr

The preceding allows the rod to be continuous instead of discrete (i.e.  p /ℓ)

Analogously:

u (x, 0) = f(x) = ò ¥o   [cos ( r x)  +  B sin  (r x)] dr

Where:

A (r) = 1/p  ò ¥-¥ f(wcos ( w)  dw

B (r) = 1/p  ò ¥-¥ f(wsin ( w)  dw

Writing solution in more compact form:

u(x, t) = 1/p [ò  o  [ò ¥-¥ f(wcos ( wdw cos (rx)  +  

ò ¥-¥ f(wsin ( wdw sin (rx)] exp (-  r 2 t ) dr

note that each term in the integral involves f(w), which can be factored out.

Use trig identity:

cos ( wcos (rx) + sin ( wsin (rx)  = cos r (x - w)

Then:

u(x, t) = 1/p [ò  o  [ò ¥-¥ f(wcos r (x - w)exp (-  r 2 t )  ddr

or:

u(x, t) = 1/p [ò  o  [ò ¥-¥ f(wcos r (x - w)exp (-  r 2 t dr) d


This can be written in definite integral form, using:

s = c r Ö t        b = (x - w)/ 2c Ö 

And using the definite integral:

ò ¥o     [exp (- s )  cos 2bs ds =   Ö p/ 2  {exp (- b ) }

But:  2bs  =   [2 (x - w)/ 2c Ö t ] r Ö t

So the final solution can be written:

u(x, t) = 1/2c Öp  ò ¥-¥ f(wexp (- x - w) 2/ 4 c   dw



No comments: