Wednesday, July 23, 2025

Solution to Solving More Difficult Partial Differential Equations (P. 4): The Vlasov Equation

The Problem again:

Show that:

Ñ x · v = 0   and:  Ñ v · (E  + v x B )  = 0

And write the resulting partial differential equation.


 Solutions:


Ñ x · v = 0 because x and v are independent phase variables.

 Ñ v · (E  + v x B )  0   because:

a)  E is a function of x only, independent of v so: Ñ v · 0
b) Ñ v · ( v x B )  

 (v y zv z y) / ¶ v x   (v z Bxv x z) /  v y  +

 (v x Bv y Bx) / ¶ v z    0 + 0 + 0 =  0

The resulting Vlasov partial DE can be written:

 f/  t + v  · Ñ x f +  q/m (E  + v x B ) · Ñ v f = 0

Or:

 f/  t + v  · Ñ x  · q/m (E  + v x B ) · Ñ ] f = 0

No comments: