The Problem again:
Show that:
Ñ x · v = 0 and: Ñ v · (E + v x B ) = 0
And write the resulting partial differential equation.
Solutions:
Ñ x · v = 0 because x and v are independent phase variables.
Ñ v · (E + v x B ) = 0 because:
a) E is a function of x only, independent of v so: Ñ v · E = 0
b) Ñ v · ( v x B ) =
¶ (v y B z- v z B y) / ¶ v x + ¶ (v z Bx- v x B z) / ¶ v y +
¶ (v x By - v y Bx) / ¶ v z = 0 + 0 + 0 = 0
The resulting Vlasov partial DE can be written:
¶ f/ ¶ t + v · Ñ x f + q/m (E + v x B ) · Ñ v f = 0
Or:
[¶ f/ ¶ t + v · Ñ x · q/m (E + v x B ) · Ñ v ] f = 0
No comments:
Post a Comment