1) Consider the table shown below, applied to circular satellite orbits around the Earth:
Distance from   | 2 r  | 3 r  | 3r/ 2  | 4 r  | 5 r/2  | 5 r  | 
Acceleration of gravity  | g/4  | 
  | 
  | 
  | 
  | 
  | 
Complete the Table above given that r = 6.4 x 10 6 m. Hence or otherwise, deduce the acceleration of gravity g at a distance 10r.
Solution:
The solution here is based on noting that the gravitational field intensity g ~ 1/r2
That is, it is inversely proportional to the distance from the center
squared. Hence, the remaining entries in the table as follows, in ascending
order: 
 g/9, 4g/9, g/ /16, 4g/25   and g/25
Given this relationship (g ~ 1/r2) then at a distance 10r we have:
g/100,
Thus, if r = 6.4 x 106 m, then at a distance:
10 r = 10 (6.4 x 106 m) = 64 x 106 m = 6.4 x 107 m
And given, g = 9.8 ms-2, we would find a new gravitational intensity (corresponding to the much greater distance from the center) of:
g/100 = (9.8 ms-2)/ 100 = 0.098 ms-2
2) Newton’s version of Kepler’s 3rd law is usually written as:(m1 + m2)P2 = 4p2/G (r1 + r2)2
where G is the Newtonian gravitational constant:
(G = 6.7 x 10-11 N-m2/kg2) and (r1 + r2) is the distance between the centers of the two bodies.
Use this to find the period P of the Moon if its mass m1 = m2/80 where Earth’s mass m2 = 6.0 x 10 24 kg and (r1 + r2) = 384, 000 km. Compare this to the value obtained by using Kepler’s simpler version of the 3rd law with (r1 + r2) = a1= 0.0025 AU.
Soln.
m2/80 = (6.0 x 10 24 kg)/ 80 = 8.3 x 10 22 kg
(r1 + r2) = 3.84 x 10 5 m
P = Ö4p2/G (a1)3 (m1 + m2)
G = 6.7 x 10 -11 m 3 s-2 kg -1
(m1 + m2) = 6.0 x 10 24 kg + 8.3 x 10 22 kg » 6.0 x 10 24 kg
P =
Ö 4p2/ (6.7 x 10 -11 m 3 s-2 kg -1) (0.0025 AU ) 3 6.0 x 10 24 kg
P » 0.002 yr.
For conservation of angular
momentum L in an elliptical orbit (with ra  the radius
vector at aphelion,  and  with rp the radius
vector at perihelion)
 L = mva ra = 
mvp rp
Or: va ra =  vp rp
va ra = (0.75 km/ sec) (9.3 x 10 4 km) » 7.0 x 10 4 km2/sec
vp rp =    (10.7 km/ sec) (6.6 x 10 3 km)
» 7.0
x 10 4 km2/sec
Given: va ra » vp rp
To within the limits of errors, the principle of angular momentum conservation is validated.
The
period is obtained from: T = 2π (a3/m)½
Where m  = G (m1 + m2) 
And:  a = [ra +  rp ] /2 =  (9.3 x 10 4 km + 6.6 x 10 3 km)/2
»
= (9.3 x 10 7 m + 6.6 x 10 6 m)/2 » 4.9 x 10 7 m
T »
2π [(4.9
x 107 m)3/[6.7 x 10-11 Nm2/kg2)
(6.0 x 1024 kg)]½
T » 4.3 x 10 4 s » 12.2 hrs.
E tot =
K + V  = mv2 / 2 -   GMm/r = 
-   GMm/2r
To obtain velocity:
E tot = mv2 / 2 - GMm/r = - GMm/2r
And: v2 / 2 -   GM/r =  -   GM/2r
v2 / 2  =  -   GM/2r + GM/r =   GM/2r
Then velocity: v = Ö GM/2r
Where r = 73,600 miles = 117, 600 km = 1.17 x 10 6 m
We know M (Earth's mass) = 6.0 x 10 24 kg
G = 6.7 x 10 -11 m 3 s-2 kg -1
Average density of asteroid given as 3.3 g/ cm 3 = 3300 kg/ m 3
Mass of asteroid = density x
volume
Assume spherical volume so V
= 4/3  (p  r 3
)
Where r = 2.0 km =  2.0  x
10 3 m
The Volume V = 4/3 (p (2.0 x 10 3 m)3 ) = 3.3 x 10 10 m 3
Mass of asteroid = (3300 kg/ m 3   ) 3.3  x
10 10 m 3 
= 1.1 x 10 14 kg
v = Ö GM/2r = where M = 6.0 x 10 24 kg
G =  6.7 x 10 -11   m 3  s-2 kg -1
v = Ö (6.7 x 10 -11   m 3  s-2 kg -1)  6.0 x 10 24   kg/ 2(1.17  x 10 6 m)
= 1.3 x 10 4 m/ s
The kinetic energy of the asteroid is:
K = 9.6  x 10 21 J

No comments:
Post a Comment