Solutions:
(1) Let: z = x + iy, and z* = x – iy
Adding:
z + z* = (x + iy) + (x - iy) = 2x
We see: x = (z + z*)/2
Subtracting:
(z –
z*) = [x + iy – x + iy] = i2y
Then: y = (z – z*)/ 2i
We can now formulate the function f(z,z*):
f(z,z*)
= 2[(z + z*)/2]2 + i2[(z – z*)/ 2i]2
2) Rewrite: z2 + z – 3 in polar form:
z2 = r2 exp(i2(q)) = r2 (cos (2q) + isin(2 q))
z = r exp(i(q)) = r(cos(q) + isin(q)
so:
z2 + z = r2 (cos (2q) + isin(2 q)) + r(cos(q) + isin(q)
Collecting like terms in i and simplifying:
f(z) = r2(cos (2q) + r(cos(q)) + i{sin(2q) + sin(q)} – 3
so:
iv(r, q) = i{sin(2q) + sin(q)}
and
v (r, q) = {sin(2q) + sin(q)}
while:
u(r, q) = r2 (cos (2q) + r(cos(q)) – 3
3)
8x 2 + 3iy - 4
= 8y – 4iy
8x 2 = 4
So: x 2 = 4/ 8 = 1/ 2
Therefore: x = Ö( 1/2) = 1/ Ö2
= Ö2/ 2
And for complex part:
8 y = - 3iy - 4iy = - 7 iy
y
= -7 i/ 8
No comments:
Post a Comment