Thursday, March 23, 2023

Looking Again At The Korteweg de Vries Equation

 The  Korteweg de Vries (KdV) equation:

(- v o  + c s   + v)   v / x’  -  m  2 v / x2  +  a  3 v / x3 =  0

is a well-known example of a soliton equation admitting nonlinear superposition, see e.g. a graphical representation of a soliton solution here:


In the KdV equation c s is the ion sound speed, and v o the  electron thermal speed.  In the form shown, note the appearance of the dissipative term:

 (m  2 v / x2 

and for a soliton to evolve into a shock a dissipative mechanism is needed.  In the more common situation steepening of the wave balances dispersion and we obtain a wave form such as shown in the graphic

  On integrating once, and excluding the shock evolution term (in m) ,  we obtain:

a  dV/ dx2   -    (v o     c s ) v  -   v 2/ 2   =  0 

Which has the same mathematical form as Newton's 2nd law of motion, e.g. 
 m x" =  F(x)  =   -   x V(x)  

Where V(x) is the potential energy. With some further manipulation we find:

dV/ dx2   =   -   v  V' (x)  =

-  ¶ v [(c s   -  v o) v 2/ 2   +     v3/ 6 ]

For a particle 0f mass a   moving under a potential field given by the quantity in brackets.  We call this quantity the pseudo potential and designate it:

 F (v) =  [(c s   -  v o) v 2/ 2   +     v3/ 6 ]

Which is also known as the Sagdeev potential.  It is left to the industrious reader to do a simple plot of  F (v) vs.  v,   with   v max   shown on v -axis.

For the criteria on  F  to obtain a soliton solution we have:

i)    F / ¶ V ] v= 0  =  0;   2 F¶ v2   <   0

ii)  F   <   0,   For   0   <   v   <   v max

iii)  d F / d V ] v= v max  >  0

We  note here that two graphs of  F   vs.  v are possible,  one for  c s   -  v o   >   0,  the other for  c s   -  v o   <   0.  Since we demand only a localized wave form then it will always be the latter form used, i.e. in further analyses.  One such is to obtain a soliton solution for the KdV equation:

a  dV/ dx2   -    (v o     c s ) v  -   v 2/ 2   =  0 

This may be solved exactly i.e. with c s   -  v o   <   0.   The procedure is then to multiply the KdV by v'  and then integrate to obtain:

a/ 2  (v' 2)  =  (v o     c s 2/ 2  -    v3/ 6

And we choose the constant of integration to be zero because we want v' = 0  when  v = 0.   Working through the process the final solution is found to be:

v   =   3 (v o     c s ) sech 2  [(v o     c s  / 4 a) ½     x' ]

Suggested Problems:

1)  Plot a graph of  F   vs.  v  for the case c s   -  v o   <   0 and indicate the position of v max  on the graph.

2)  Integrate  the KdV equation:

a  dV/ dx2   -    (v o     c s ) v  -   v 2/ 2   =  0 

And show how the soliton solution:

v   =   3 (v o     c s ) sech 2  [(v o     c s  / 4 a) ½     x' ]

Is obtained. 

No comments: