We have already seen how Lagrangian dynamics applies to simple mechanical systems, e.g.
- Lagrangian Dynamics Revisited (1)
- We now examine a more advanced application, namely in terms of modeling a linear triatomic molecule. We sketch the basic model system below:
Kinetic energy:
T = ½ ( m x1’ 2 - M x2’ 2 + m x3’ 2 )
Potential energy:
V = ½ k[ (x2 – x1) – b] 2 + ½ k[ (x3 – x2) – b] 2
T =
½
[(m….0…..0)
[(0….M…..0)
[(0….0… ..m)
And make use here of the refined position parameter in terms of displacements h i:
h i = x i
– x o
i
So: h
1 = x 1
– x o
1
x 02
– x o
1 = x 03
– x o2 = b
V = ½ k[ (h 2 – h 1) 2
+
½ k[ (h 3 – h 2) 2 ]
T = ½ ( m h 1’ 2 - M h 2’ 2 + m h 3’ 2 )
Rewriting V:
V = ½ k[ (2 h 2 2 + h 1 2 + h 3 2 - 2 h 1 h 2 - 2 h 3 h 2 )]
In tensor form:
½
[(k…
.-k…..0)
[(-k….2k…. -k)
[(0….-k…
.. k)
T = h ×
T × h
By Lagrange’s eqns.(Tensor form)
T × h + V
× h
=
0
Assume a solution of form:
exp (iw t)
w 2 T
× h
+ V
× h
=
0
And the determinant of coefficients must = 0 for non-trivial
soln.
è | w 2 T + V | = 0
è
Secular determinant:
(k - w 2
m …-k… . .0)
(-k …..2 k
- w 2
m .. -k)
(0….
….-k….. k - w 2
m)
w1 = 0, w2 = Ö(k/ m), w3 = Ö{ k/ m (1 + 2m/ M)}
For amplitudes, three solutions are obtained:
h 1 = A1 exp (iw t)
No comments:
Post a Comment