1) For the dual angle pendulum system let:
x1 = L1 sin f1
x1’ = L1 cos f1 f1’
y1 = L1 cos f1
y1’ = - L1 sin f1 f1’
V = mgL1 (1 - cos f1)
T1 = ½ m( r q’ 2 ) = ½ m1( L1 f1’ 2 ) and T2 = ½ m2( x2’ 2 + y2’ 2)
Where:
x2 = L1 sin f1 + L2 sin f2
y2 = L1 cos f1 + L2 cos f2
x2’ = L1 cos f1 f1’ + L2 cos f2 f2’
y2’ = L1 sin f1 f1’ - L2 sin f2 f2’
Then:
T2 = ½ m2(L1 2 cos 2 f1 f1’ 2 + L2 2 cos 2 f2 f2’ +
2L1 cos f1 f1’ L2 cos f2 f2’ + L1 2 sin 2 f1 f1’ 2 +
L2 2 sin 2 f2 f2’ + 2L1 L2 sin f1 sin f2 f1’ f2’ )
T2 = ½ m2(L1 2 f1’ 2 + L2 2 f2’ 2 + 2L1 L2 cos ( f2 - f1) f1’ f2’
Therefore:
L = ½ m1 L1 2 f1’ 2 + ½ m2( L1 2 f1’ 2 + L2 2 f2’ 2 )
+ m2 L1 L2 cos ( f2 - f1) f1’ f2’ – m1 g L1 (1 - cos f1 ) -
m2 g [L1 (1 - cos f1 ) + L2 ((1 - cos f2 )
2) a) The Lagrangian is L = T – V
L = ½ m( r” 2 + r q’ 2 + z’ 2 ) - mg z
Applying constraints and eliminating one coordinate (z) [Rem: z = ar]
L = ½ m( r’ 2 (1 + a 2 )+ r 2 q’ 2 ) - mg (ar)
b) The new Lagrange’s equations are then:
i) m r’’ 2 (1 + a 2 ) - m r 2 q’ 2 + mg a = 0
And:
ii) m r’’ (1 + a 2 ) - ℓ / mr2 + mg a = 0
Rem: angular momentum: ℓ = mr2 dq/ dt = mr2 q’
c)Using undetermined multiplier l:.
Write: m r’’ - m r 2 q’ 2 = l a
Where ¶ f / ¶ r = a
d/dt [m r 2 q’ 2 ] = ℓ
m z’’ + m g = l
We see l is the generalized force associated with z-component
But in terms of radial coordinate r:
z = ar, so that:
F r + F z = const.
(Normal force exerted by cone’s side requires: F r = - F z )
z = ar, so z’’ = ar” then:
m z’’ + m g = m (ar”) + mg = m(ar” + g)
l = F z = m z’’ + m g = m(ar” + g)
Then force acting along the radial direction is :
F r = - m(ar” + g)
No comments:
Post a Comment