1) Consider the function: f(z) = 1/ (z+ 1) ((z + 3)
a) Find a Laurent series for: 1< ÷ z ÷ < 3
b) Find a Laurent series for 0 < ÷ z + 1 ÷ < 2
Solutions: We first resolve the function f(z) by partial fractions, so:
f(z) = 1/ (z+ 1) (z + 3) = ½ [1/ z + 1] - ½ [1/ z + 3]
÷ z ÷ > 1:
1/ 2 ÷ z + 1 ÷ = 1/ 2z (1 + 1/z)
= 1/ 2z [ 1 – 1/z + 1/ z2 + …….]
This is the principal part of the series.
Next, consider: ÷ z ÷ < 3:
1/ 2 (z + 3) = 1/ 6(1 + z/3) = 1/6 - z/ 18 + z2 /54 + ……
This is the analytic part of the series. So we just combine the two parts to get:
f(z) = 1/ 2z [ 1 – 1/z + 1/ z2 + …….] + 1/6 - z/ 18 + z2 /54 + ……
b) Consider first: ÷ z + 1÷ > 0
We let (z + 1) = u then write:
1/ (z+ 1) ((z + 3) = 1/ u (u + 2) – 1/ 2u (1 + u/2)
= 1/ 2u (1 – u/2 + u2/4 - u3 /8 + ……)
Replace u with z above:
1 / 2(z + 1) - ¼ + (z – 1)/ 8 - (z + 1) 2 / 16 + ……
Now take:
Then for the same series above, since
÷ z + 1÷ < 2 we require: z ¹ -1
WHY?
2) The function: f(z) = -1/ (z – 1) (z – 2)
a) Rewrite it using the partial fraction form
a) 0 < ÷ z ÷ < 3 and
b) ÷ z ÷ > 3
7z 2 + 9 z - 18 / z 3 - 9z = z (z + 9) + 18/ [z {z + 3) (z – 3) ]
= A/ z + B/ (z + 3) + C / (z – 3)
7 z 2 + 9 z - 18 = A(z + 3) (z – 3) + Bz (z – 3) + Cz (z + 3)
For z = 0: - 9A = -18 so that A = 2
For z = 3: 18 C = 7(3)2 + 9(3) – 18 = 63 + 27 – 18 = 72
= 2/ z + 1 / (z + 3) + 4/ (z -3)
Rewrite as:
2/ z + 1/3 (1 / 1 + z/3) – 4/3 (1 / 1 – z/3)
For term 1: ÷ z ÷ < 1
For term 2 : ÷ z ÷ < 3
For term 3: ÷ z ÷ < 3
Expand 2nd and 3rd terms and expand using 1 / (1 – z) and substituting:
2/ z + 1/3 (1 – z/ 3 + z 2 / 32 + …) - 4/3 (1 + z/ 3 + z 2 / 32 + …)
Combining Terms:
2/z – 1 – 5z/ 32 + 3 z 2 / 33 + …
Then:
Which series can be represented:
2/ z + [ å¥ n = 0 (-1) n – 4 / 3 n + 1 ] z 4
For: 0 < ÷ z ÷ < 3
Now, rewrite the original partial-fraction f(z) in the form:
2/ z + 1/ z (1 / 1 + 3/z) + 4/z ( 1 / 1 – 3/z)
Expand 2nd, 3rd etc terms using 1/ 1 – z:
Þ 2/ z + 1/z (1 – 3/z + 32 / z 2 + ….) +
......+ 4/z (1 + 3/z + 32 / z 2 + …)
......+ 4/z (1 + 3/z + 32 / z 2 + …)
= 2/z + 1/z - 3/ z 2 + 32 / z 3 + +…….
+ 4/z + 12/ z 2 + 36 / z 3 + …..
= 2/z + [5/z + 9/ z 2 + 45 / z 3 + ………]
Which can be represented in the form:
2/ z + å¥ n = 0 3 n (4 + (-1) n ) / z n + 1
For: ÷ z ÷ > 3
No comments:
Post a Comment