Wednesday, December 30, 2020

Solutions To Astrophysics Problems (Stellar Atmospheres)

 1) Find the effective temperature of the Sun and the boundary temperature (To) and account for any difference.  

(Take the Stefan -Boltzmann constant s = 5.67 x 10-8 W m-2 K-4  )

Solution:

The effective temperature is obtained using:

p( Fo ) = s(Teff)4

So:  Teff  = [p( Fo ) / s] 1/4

Where s = 5.67 x 10-8 W m-2 K-4

Is the Stefan-Boltzmann constant. Then:

Teff  = [6.3 x 10 7 Jm-2 s-1/ 5.67 x 10-8 W m-2 K-4] 1/4

Teff  »  5800 K

The boundary temperature is found from:

Teff  = (2)1/4 To   = 1.189 To

Or:  

To  =   Teff  /1.189  = 5800K/ 1.189  » 4800 K

 The boundary temperature differs because of being referenced to a different optical depth. The boundary temperature (To) approaches the value of the effective (or surface) temperature when t = 0, but this still exhibits a difference in layers so will not be exactly the same!


2) Prove   J = ½(I1 + I2)

   By integrating I in the forward and backward directions. 

Solution:  We define:

J  =  1/4p  ò 4p  I (q) dw    

In forward direction:

J(+) =  1/4p  ò2po  òp/2 o   I1 sin q dq d   

In backward direction:

J(-)  =   1/4p  ò2po  ò-p/2 o   I2 sin q dq df    

(Note change in upper limit of 2nd integral)

J =  J(+)  +  J(-)  =  

    1/4p  ò2po  òp/2 o   I2 sin q dq df   1/4p  ò2po  ò-p/2 o   I2 sin q dq df     

=  1/4p  [ 2 (I1 + I2) ] =   ½ (I1 + I2

J = ½(I1 + I2)

No comments: