The Problem: Integrate:
  ò C (z + 1)   dz / (2z +  i)
Solution:
A simple (m=1) pole occurs at z =
-i/2
Then:
Res (f(z)) =  (z – a)   f(z)  = 
lim z ® -i/ 2    (2z + 
i)   [(z + 1)  / (2z + 
i)]
Res (f(z)) = (z + 1)/ 2] z = -i/ 2 = (-i/2 + 1)/ 2 = ½ - i/4
If f(z) has the form p(z)/ q(z) and a first order pole exists at z = z o, then Res f(z) at z o =lim z ® z o p(z) / q'(z) where q'(z) is the first derivative.
Then: ò C  (z
+ 1)   dz / (2z +  i) 
=  2 pi   (sum of residues)
= 
2 pi   (½  -  
i/4)  =   pi -   (pi)2/
2 =    pi   + p/ 2
No comments:
Post a Comment