1) A straight, thin rod PQ of length 2a of constant cross sectional area A is of variable density, r.
Given r  = ro (1 + 2x 2 / a 2)  where x is the distance along the rod from the end of P and ro  is a constant.  Find the position of the center of mass. 
Solution: 
We make use of the sketch below with blackened element dx and distance x from P.   
The volume element can then be expressed:   
dV=   A dr x 
and the mass element:  dm =  Adx r
Where r  is the density.   Then we can write:
dm =  A dx ro (1 + 2x 2 / a 2)   
The x -coordinate of the center of mass of  dm  is x, so therefore:
x =  
ò 2a 0   x. Adx ro ( 1 + 2x 2 / a 2) / ò 2a 0  Adx ro ( 1 + 2x 2 / a 2)
x =  A ro ò 2a 0  ( 1 + 2x 2 / a 2) dx /A ro ò 2a 0  ( 1 + 2x 2 / a 2) dx 
=  [x 2 /2  +  2x4  /4a 2] 2a 0 / [x +  2x3  /3a 2] 2a 0
=  (2a 3 + 8 a 2) / (2a  +  16a/3)  =   15a/ 11 (from end of P)
2) Find the center of mass of a solid hemisphere of radius r if the density at any point P is proportional to the distance of P from the base of the hemisphere.  (Hint:  Add another lower latitutde layer to the upper latitude circle below to form a thin slice of thickness dy.  Then imagine the whole hemisphere cut into slices of thickness dy, i.e. by planes perpendicular to the y-axis)
Solution:
Below I show the hemisphere again with the lower latitude circle added and slice thickness dimension dy indicated, which will provide the basis for integration:
Note: We imagine the entire solid cut into slices of thickness dy so can write: 
dV = A(y) dy  as the volume of the representative slice at distance y above the base of the hemisphere (which lies in the x-z plane).  The area of a face of the slice dV is: 
A(y) =  p x 2   where:  x 2 +  y 2 =  r 2
And so:  dV = A(y) dy  =   p (r 2   - y 2) dy  
With mass element:  dm  =  kp (r 2   - y 2) y dy  
The center of mass of the 'ground' slice may then be taken at the geometrical center (x, y, z) =  (0, y,  0)  or:
y  =     ò y dm / ò dm
= ò r 0  kp (r 2   - y 2) y dy  / ò r 0  kp (r 2   - y 2) dy
= kp [r 2 y3  /3   -  y5  /5 ] r 0 / kp [r 2 y2  /2   -  y4  /4 ] r 0
y  =  8r/ 15




No comments:
Post a Comment