In the usual treatment of differential geometry,  arc
length  is given by:
L =Öå 3 i =1 ( y i 
-  x i ) 2
Where ( x i ,
y i) define the end points of a curve segment. Hence, when
defining the length of an arc C of a curve we can technically approximate it
using a sequential series of broken lines or chords, as depicted below:
The length of such broken lines can easily be
determined if the end points of each chord are known. Let ℓi  then be a series of broken lines or chords whose end points lie
on C.  Then if ℓi   tends to some limit s,  C is said to be
rectifiable and is called the length of the arc C.  
Let x(t) then (a <  t  < 
b) be an allowable representation of an arc of a curve of class r > 1. 
Then the arc C has length: 
s = ò b a    Ö {å 3 i =1  (dx i /dt) 2 } dt  
And s is independent of the choice of allowable
representation. Note that if we replace the fixed value b in the above with the
variable t then s becomes a function of t. Note also that a can be replaced
with any other fixed value. Thereby we obtain the integral:
s(t) =  ò b a     Ö(x' · x')
dt 
The function s(t) is then called the arc length of C.
If  t o  > t then s(t) is positive and
equal to the arc a(t o) b (t)  of C. If t< t o  then
s(t) is negative and the length of a(t o) b
(t)  is given by - s(t). Instead of:
s2 =  å 3 i =1 x i 2 =  x' · x'
We can write: 
 ds2 =å 3 i =1 dx i 2   =  dx · dx
where  ds is called the element of
arc.  For example, looking at the circular helix we find:  
x' = (- r sin t, r cos t, c), x' · x' = r2 + c 2
So that:  s(t)  =  tÖr2 +
c 2
Then if we also
wish to represent the circular helix by a parametric representation with arc
length s as parameter, we can write:  
x(s) = (r cos (s/w), r sin (s/w), cs/w )
And: w = Ör2 + c 2
What about?:
x 1 = t,
0 {t = 0
x 3 = 0 
 (0 <  t   <  t 1
We note the function is continuous even at t = 0, but the corresponding point set - which doesn't form an arc according to the definition, has no length.
Example (3): If the arc length in polar coordinates can be obtained from, e.g.:
a)Find the arc length between 0 and p/2,
b) then the arc length between  -p/2  and  p/2 for the Archimedean spiral:  r  =  q - sin  q  and sketch the resulting  curve.  
(a) Solution.  From the polar
equation we will have:
r(q) 2   = (q - sin  q) 2  =
q 2 - 2 q sin  q
+ sin 2  q
And: 
 d r(q)  / d q   =  1 -  cos  q
(d r(q)  / d q ) 2   = 
(1 - cos  q) (1 - cos  q) = 1 - 2 cos  q + cos 2  q
Whence:
r(q) 2  +   (d r(q)  / d q ) 2   = 
q 2 - 2 q sin  q
+sin 2  q + 1 - 2 cos  q
+ cos 2  q
Leaving the integral:
òp/ 2 0Ö{(q2 - 2 q sin  q + sin 2  q)
+
 ( 1 -2 cos  q + cos 2  q)}d q
=>òp/ 2 0   Ö{q2 - 2cos  q - 2 q sin  q +2 } d q
(Rem:  sin 2 q  +  cos 2  q
= 1)
The end result for the integral computation:
(b)The second integral is analogous - simply changing the limits -
whereupon we find (using Mathcad):





No comments:
Post a Comment