Solutions to the first four problems of Set (3):
 1(a) What unbalanced torque will produce an angular acceleration of 3 rad/sec2  in a 100 kg disk having a radius of gyration of 0.7 m?
Solution:  a  =  t / I and:  t  = aI
where angular acceleration:   a  =   3 rad/sec2
Since we are dealing with a disk
its moment of inertia is given by:
I = ½ m r 2   = ½ (100 kg) (0.7 m) 2  =    24.5 kg · m2  
Unbalanced torque:  t  = aI  =   3 rad/sec2 (24.5 kg · m2 ) = 73.5 Nm
(b) Determine the mean effective torque that must be applied to a 40 kg flywheel with radius of gyration 0.2 m to give it an angular speed of 300 rpm in 10 secs?
Solution:  300 rpm = 10p rad/sec
angular acceleration developed in 10 sec:
a =(w 1-w o)/t  =  (10 p rad/s – 0)/ 10 s
=   p   rad/sec2
Since we are dealing with a disk (flywheel) its moment of inertia is given by:
I = ½ m r 2   = ½ (40 kg) (0.2 m) 2  =    0.8 kg · m2  
The mean effective torque that must be applied:
t  = aI  = (p   rad/sec2) 0.8 kg · m2  =    2.51 Nm
3) For the example problem of the roller with friction force acting, assume a mass M = 1.5 kg and R = 0.15m.  If the angular acceleration is 1.0 rad/sec2   find:
a) The force F pulling the roller if the friction force = 0.
Soln:  F  -   F    = MA  =  ½ Mr 2 a 
But:  F    = 0
So: F =  ½ Mr 2 a   = ½  (1.5 kg) (0.15m) 2  1.0 rad/sec2
F = 0.016 N
b) The magnitude of the force  F  if the pulling force F = 15 N.
F    = - 1/3 F   =  -1/3 (15 N) = - 5N
c) The linear acceleration for case (a),  for case (b).
a) Soln.   F = MA,   A = F/M =  0.016 N/ (1.5 kg) = 0. 01 m/sec2
b) Soln. F  -   F    = MA  
A = (F  -  F ) /M = (15N -  (-5N)) / 1.5 kg  = 20 N/ 1.5 kg 
= 13. 3 m/sec2
A Yo-yo is made from a uniform disk of total mass M and radius R with a string wrapped around it as shown below:
The top end of the string is tied to the ceiling and the Yo-yo is released from rest with the string vertical.
a) Draw a force diagram showing the forces acting.
b) Write the equations for the translational and rotational motions.
i) Translational: Mg - T = MA
ii) Rotational:   RT = ½ MR 2 a
c) Write equations for the angular acceleration and angular momentum.
a   =  2RT/MR 2      = 2 T/ MR
Finding the angular momentum L (= Iw)  requires doing part (d) first, since:
 w = v/R:
Whence: v =  Ö(4gh/ 3)    
So that: w =  Ö(4gh/ 3)/  R
So:  L =  I w  =  I  Ö(4g/ 3) h / R 
=  (½ MR2 )Ö(4gh/ 3)/ R
L =  (½ MR)Ö(4gh/ 3)
d) Find the velocity of the Yo-yo after it has dropped a height h.
Go back to part (b):
Mg - T = MA
RT = ½ MR 2 a  =  ½ MRA
(where we used the fact that A = Ra,  given the string unwinds at a rate proportional to the angular velocity  w  as the disk falls)
Now, divide the 2nd of the above eqns. by R after substituting the resulting equation for T into the first, i.e.
Mg - ½ MA  = MA  or:    
Mg =   MA + MA/2  =  3MA/2 
  so:   g =  3A/2
Or:  A = 2g/ 3   And:
  T =  ½ M (2g/3)  =  1/3 Mg
If the yo-yo starts from rest, the speed v of the center of mass after it has dropped a distance h is:
v =  Ö(2Ah)    since the acceleration is constant. 
 Substituting the value A = 2g/ 3:
v =  Ö(2(2g/ 3) h) =  Ö(4gh/ 3)
 
No comments:
Post a Comment