The Riemann curvature tensor was defined in an earlier blog post, e.g.
A Look At General Relativity and Tensors (Part 3)
as: R n b m n
This tensor , as noted in that post, is of key importance in general relativity. The Ricci tensor of the first kind is defined simply as a contraction of the Riemann tensor of the 2nd kind, i.e. the above curvature tensor. Thus:
R b m = R n b m n
Raising an index yields the Ricci tensor of the second kind, e.g. R b m
It is completely determined by knowing the quantity R b m for all vectors V i of unit length. The tensor is obtained by defining a Ricci tensor of the 2nd kind thus:
  R b m   =  g bn  R  nm
The number of independent components of this tensor  in a space of N- dimensions is:  ½ N (N + 1 ).  Where the  g bn  denote the  g- tensor components with indices raised.
Hence, there will be three components if N = 2,  six components if N = 3 and ten  components if N = 4.  In the latter we have the case for relativistic 4 – dimensional space-time.
Consider first the simplest case for N = 2 and let the metric of interest be *:
g 11    =   1,     g 22 =  x 1 , 
For this (N=2) case:
R =  g 11  ( R’ 11 ) +  g  22    ( R’ 21   )
Where:  g 11      =   1,     g  22 =  1/  x 1 , 
(Note: Value of g 22 is not the same as g 22 !)
(Note: Value of g 22 is not the same as g 22 !)
 R 11  =  g  22   ( R’ 21   ) =    (1/  x 1  )( -1/ x 1 )
 R 22 = g 11  ( R’ 12   )  =  (1)( -1/ x 1 ) 
R (Ricci) =  g 11  ( R  11 )  + g  22    ( R 22   )
R (Ricci) =   g 11  (1/  x 1  )( -1/ x 1 )  + g  22    ( - 1/ x 1 )     
R (Ricci) =  
= (1) [- 1/  (x 1 ) 2 ]  +  (1/  x 1  ) [- 1/ x 1  ]
  = - 1/  (x 1 ) 2     - 1/  (x 1 ) 2      =   - 2 /  (x 1 ) 2      
More complex, if N= 3, one has six components and the final equation is written:
R (Ricci) =  g 11  ( R 11 )  +  g  22  ( R 22 ) +  g   33   ( R 33 )
Where:  R 11 =    g  22     R 2112
R 22 =   g 11   R 1221 +    g   33    R 3223
R 33 =    g  22     R 2332
----------------------------
* Assume a metric given by the 'g' values:
g 11    =   1,     g 22 =  x 1 ,    g 33 =  x 2
Then the nonzero Christoffel symbols have values:
G 1 22    =  -1 ,    G 2 12    =  G 2 21    = 1/ x 1
G 3 23    =  G 3 32     =   - 1/ x 2
Example (1): Find: g 11 G 2 21
g 11   G 2 21      =  (1) (1/ x 1) =  1/ x 1
Example (2): Find: g 22 G 3 32
g 22 G 3 32     = x 1  (- 1/ x 2 ) =  - x 1  / x 2
Recall the relations of Riemann tensors to Christoffel values, e.g.
Recall the relations of Riemann tensors to Christoffel values, e.g.
R 1 212 = - 1 - G 1 22 G 1 11 - G 2 21 G 1 22 = 0
Suggested Problem:
Obtain the Ricci tensor for the metric : 
g 11    =   1,     g 22 =  x 1 ,   g 33 =  x 2.
No comments:
Post a Comment