1) Two observers using cross staffs obtain zenith distances from their respective locations of φ = 45 degrees, and φ = 35 degrees. How far apart in latitude (L) are their locations?
Solution:
In each case the latitude is obtained from L = (90
- φ) 
So: L1 = (90 - φ1)    and  L2
= (90 - φ2) 
Then the difference in latitude is just the
difference in zenith distances or:
L2  - L1 =  φ2   -  
φ1  =   45 deg -  35 deg = 10 deg
2) Consider the system Epsilon Ursae Majoris which semi-major axis subtends an angle
of  2½" and for which the parallax of the system is
0."127. Find the  semi-major axis in astronomical units. (Hint:
p"  = 1/d)
Solution:
We have for the semi-major axis of a binary system
whose plane is in the observer's visual plane:
a = (a" x d)
where: a"  =  2
½"    and:   p = 0."127
But  p"  = 1/d (from hint)
    so:  d = 1/ p"  =    1/
0."127  = 7.87 pc
Then:   a =  (2
½"     x  7.87 pc)  =  19.67 A.U.
3)  What telescope magnification would be
required to observe the planet Uranus as a disk 2 arcminutes in diameter?
Solution:
Uranus is 4"  or 4 arcsec in
diameter, unmagnified.
2 arcminutes  =   2 x (60
arcsec) = 120 "  since 60 arcsec = 1 arcmin
Then:  M  =  120"/
4"  =    30x
4) Find the Moon's angular diameter in radians.
Solution:
The Moon's angular diameter is 1/2 degree.
One radian (1 rd) can first be converted into
arcsec as follows, given there are 3600 arcsec per degree.:
1 rd = 57.3 degrees = 57.3 deg/rad x (3600"/
deg)= 206 280 "
But 1/2 degree  =   1800 arcsec =
1800"
Then:
a  (rd) = 1800"/ 206 280"/ rad =
0.009 rad
No comments:
Post a Comment