First obtain the perturbation term R in terms of Legendre functions:
R= k 2 m 3 [ 1/ r 3 + ½ r 2/ r 3 3 - 3/2 r 2/ r 3 3 cos 2 S ]
If we take  m 3 = 
mass of Jupiter,  m 2 = mass  of Earth, and
a 3 =  semi-major axis of Jupiter we can calculate
the first order perturbations in L, G,  ℓ and g using the
reference Hamiltonian:
H =
 -  m 2
/ 2 L 2  -  k 2  m
3    [1/  r 3 +  ½ 
r 2/ r 3 3 -
3/2  r
2/ r 3 3  cos 2 S ]  
We thereby obtain a general functional Hamiltonian: 
H  (L, G,  ℓ,  g, m , k 2
, m 3  ,  a 3  , 
t)   
And can write out the
differential equations to solve the problem. 
One such equation would be:
dL/ dt = - ¶ H / ¶ ℓ
Integration yielding:
L - L o = ò t t o F (ℓ) dt
Where F (ℓ) = F(L, G, ℓ , g, constants, t)
We then substitute for each of the variables: L, G etc. Earth and Jupiter values, and also:
 ℓ   - 
ℓ  o 
,   g   -   g  o  ,   etc.  leaving everything else constant and taking
the specific integral in each case.  Do this
for L, G,  ℓ and
g
m 2 = 1/( 32930 m ☉ )
a 3 = 5.2 AU
On computation using the preceding, we get an error in the reference Hamiltonian:
d H = k 2 m 3 10 -2
For an error magnitude e » 0.012
No comments:
Post a Comment