1) Solve: ¶ z/ ¶ x = ax + y
Solution:  Since the differentiation is with respect to x only, we can treat y as a constant and separate the variables thus:
dz =   (ax + y) dx
On integration we obtain the general solution:
z   =    1/2  a x 2     +   xy   +   y  (y) 
2) Solve:  ¶ 2 u/ ¶ x2  -  4  [ ¶ 2 u / ¶ x  ¶ y]  + 4[ ¶ 2 u/ ¶ y 2 ] = 0
Solution:  The auxiliary (quadratic) equation corresponding to the differential equation is:
m2  - 4 m  + 4 = 0
Factoring yields:   (m - 2)  (m - 2)  =  0  
This discloses a double (e.g. repeat) root of m  = 2
So the general solution is written in terms of two arbitrary functions, 
each with (y  + 2x):
Thus:   u   =   f( y + 2x)  +  xg(y + 2x) 
3)  Solve the following higher order partial DE:
¶ 4 z/ ¶ x4  -   6  [ ¶ 4 z/ ¶ x 3  ¶ y]  +  14 [¶ 4 z/ ¶ x2  ¶ y2 ] -  
 16 [ ¶ 4 z/ ¶ x   ¶ y 3 ]     +   8  [ ¶ 4 z/ ¶ y 4 ]   =  0
Solution:  Again we write out the auxiliary (quadratic) equation corresponding to the DE:
m4  - 6  m3 + 14 m2  - 16 m  + 8  = 0
Factoring yields:  
(m - 2) (m - 2) (m - (1 +i))(m - (1 - i))
so  m  =  2, 2,  1 + i, 1 - i    
Hence, the general solution (noting the repeat root of m = 2) is:
z  =   j o (y  +   2 x)   +  x  y o (y +  2 x)  +  j1  (y  +  x  +  ix)   +   j1 (y   + x  - ix) 
+  i[ y1  (y   + x  +  ix)  -   y1  (y   + x  -  ix)]
4)  Consider a wire of length  ℓ :
]-------------- ℓ   ---------------------->[
for which the relevant wave equation is:
 ¶ 2 u/ ¶ t 2  =   c 2   [¶ 2 u/ ¶ x2 ]
If the displacement satisfies:
u(0, t) = u(ℓ , t )  =   0     ( t >  0)
Suppose at time t= 0 the displacement is u(x,0)  =  f(x)
And:    ¶ u/ ¶ t ] t=  0   =  g(x)
Using the technique of separation of variables write two different general solutions for X( ℓ ) and state why one is unacceptable
Hints:  i)  u(0, t) =  X(0) T(t)   and
 (ii)  u(ℓ , t )  = X( ℓ ) T(t)
---------
Solution:  By separation of variables we have: 
u(x, t) =   X(x) T(t)
Now let:  dT/ dt =  T ',    d 2 T/ dt 2   = T"
dX/ dt =  X '        d 2X/  dt 2   = X "
So that:  ¶ 2 u/ ¶ t 2  =  X(t) T "(t)
And:
¶ 2 u/ ¶ t 2  = X" (x) T (t)
The wave equation can then be written:
XT "   =   c 2   X"  T
Or:    T "/ c 2  T   =    X" / X
We set both sides equal to a constant K (separation constant):
 T "/ c 2  T   = K  =      X" / X
Two equations result:
i) X"   -   K X = 0
ii) T "  -   c 2 KT    =   0
We know (hints):
a) u(0, t) =  X(0) T(t) =  0 
b)  u(ℓ , t )  = X( ℓ ) T(t)  = 0 
Look at two cases:
i) K  = 0
Then X" - KX = 0  becomes X" = 0
For which: X(x) = c1 X + c2
And: X(0) = 0   ⇒ c2 = 0  so X(x) = c1 X
However,  X(x) = 0 ⇒  c1 = 0  and X( ℓ ) = 0
Which is unacceptable, so K cannot be zero. So next look at K > 0
ii)  K  > 0
Then:  Let K  =    r 2
So that:  X"(x) -  r 2 X  = 0
Has solution:  c1 exp (r x)  +  c2 exp (-r x) 
After eliminating c2  (as fn. of  c1)  
 X(x) =  c1 [exp ( r x)   -   exp (-r x) ]   ⇒
X(ℓ) =  c1 [exp ( r ℓ)   -   exp (-r ℓ) ]   =   2 c1 sin n r ℓ 
No comments:
Post a Comment