Vector problem solutions (From May 14 post):
 
(b):B - A = (-i -j) - (3i - 4j) = - 4i + 3 j with magnitude: Ö {(-4) 2 + (3) 2} = Ö 25 and
direction - 38.6 deg with respect to the - x - axis.
2) Using the method of components, find the vector sum of the two vectors A and B if A makes an angle of 45 degrees with the x-axis and has a length of 6 units, and vector B makes an angle of 135 degrees with the x-axis and has a length of 8 units.
Soln. We know: A x = A cos q , A y = A sin q ,
A x = 6 cos 45 o = 6 / Ö2 , A y = 6 sin 45 o = 6 / Ö2
  
Also: B x = B cos q , B y = B sin q
  
Whence:
  
3) For the 3D rectangular box shown earlier, e.g.

For which: T = a i + b j + c k, and assuming sides a = 6, b = 3, and c = 2 :
a)Find the direction cosines. 
1)      For two vectors A = 3i – 4j and B = -i – j, find the magnitude and direction of: 
A + B, and B – A.
A + B, and B – A.
Solns (a).;  A + B =   (3i - 4j) +   (-i  -j)  =     2i  - 5j    with magnitude:  Ö {(2) 2   + (-5) 2}   =     Ö 29   and direction - 68.2 deg with respect to  +x- axis.
(b):B - A = (-i -j) - (3i - 4j) = - 4i + 3 j with magnitude: Ö {(-4) 2 + (3) 2} = Ö 25 and
direction - 38.6 deg with respect to the - x - axis.
2) Using the method of components, find the vector sum of the two vectors A and B if A makes an angle of 45 degrees with the x-axis and has a length of 6 units, and vector B makes an angle of 135 degrees with the x-axis and has a length of 8 units.
Soln. We know: A x = A cos q , A y = A sin q ,
A x = 6 cos 45 o = 6 / Ö2 , A y = 6 sin 45 o = 6 / Ö2
Also: B x = B cos q , B y = B sin q
Whence:
B x   =   8   cos 135 o   =   - 8  / Ö2  ,  B y   =    8  sin 135 o     = 8  / Ö2  
3) For the 3D rectangular box shown earlier, e.g.

For which: T = a i + b j + c k, and assuming sides a = 6, b = 3, and c = 2 :
a)Find the direction cosines.
cos a   =  a /  Ö (a  2  +  b 2  +   c  2  )  =    6 /  Ö (6  2  +  3 2  +   2  2  )
= 6 / Ö (36 + 9 + 4 ) = 6 / Ö 49 = 6/7 = 0.857
= 6 / Ö (36 + 9 + 4 ) = 6 / Ö 49 = 6/7 = 0.857
cos b    =  b /  Ö (a  2  +  b 2  +   c  2  )  =  3 / Ö (6  2  +  3 2  +   2  2  ) 
=    3 /  Ö (36   +  9   +   4   )  =  3 /  Ö 49  = 3 /7 =  0.429
cos  g   =  b /  Ö (a  2  +  b 2  +   c  2  ) =   2 /  Ö (6  2  +  3 2  +   2  2  )
= 2 / Ö (36 + 9 + 4 ) = 2 / Ö 49 = 2 /7 = 0.286
= 2 / Ö (36 + 9 + 4 ) = 2 / Ö 49 = 2 /7 = 0.286
b) Show that:  cos 2  a   +    cos 2  b    + cos 2  g   =     1
I.e.
 (0.857) 2  +   (0.429)2   +  ( 0.286)2   =     1
No comments:
Post a Comment