Note C is  now  the right hand half of the circle  êz ê = 2  from z = -2 i to z = 2 i. 
Hence we want to find the integral of: 
I = ò C  z* dz
For which z = 2 exp (i q)  (- p/2 <   q  <  p/2)
I=  òp/2 -p/2  (2 exp(i q)) (2 exp(- i q))  dq  =
  4i   òp/2 -p/2   dq
 = 4 i(p/2  - (-p/2)) = 4i   (p)  =  4 pi
Note that for such a point z on the circle êz ê = 2 ,
It follows that zz* = 4 or z* = 4/z. So that the result  4 pi can also be written:
I = ò C  dz/ z =  pi
No comments:
Post a Comment