f(s) = ò ¥o exp(-st) F(t) dt
For all s such that the integral exists, then f is called the Laplace transform of F and is written as:
f = £ {F} or f(s) = £ {F(t) }
Example: Compute £ {t} where F(t) = t
£ {t} = ò ¥o exp(-st) t dt = lim R ® 0 ò Ro exp(-st) F(t) dt
= lim R ® 0 [ - t/s exp (-st)] Ro + 1/s ò Ro t exp(-st) dt
= lim R ® 0 - R/s exp (-Rs) + (-1/ s 2 exp(-Rs) + 1/ s 2 )
General properties of Laplace Transforms:
1)Let F1 and F2 both have Laplace transforms on some common
interval. Let c1 and c2 be constants. Then:
£ {c1
F1 + c2 F2} =  c1 £ {F1} 
+ c2 £ {F2}  
Let F1 = 1, and F2 = cos t
Then:  £ {1 – cos t} =   £ {1} - £ {cos t} = 1/s  - s /1 +  s 2 
2)Let F be continuous for t > 0 and of exponential
order exp (a t).  Assume F’ is piecewise continuous on every
interval of the form [0, b], and 0 < 
b <  ¥    .  
Then, 
£ {F’}exists
and:
£ {F’(t)
}  = 
s  £ {F(t) } 
-  F (0)
Solution
example:
Solve:   dY / dt  +  
2Y = cos t
Using Laplace
transforms:
Then:
£ {Y’(t)
}  + 2 £ {Y (t) } 
=  £ {cos (t) }  
And:
£ {Y’(t)
}  + 2 £ {Y (t) } 
=    s / s 2 +  1 
Further:   £ {Y’(t) } 
 = 
y(s)
s £ {Y’(t) } 
-  Y(0)  + 2 £ {Y (t) } 
=    s / s 2 +  1
s y(s) + 1  + 2 y(s)  
=  s / s 2 +  1
y(s)  [s + 2} 
=   s -   s 2 +  1  / s 2 +  1
Whence:  y(s)  =    -  s 2 +
s  -  1  / ( s 2 +  2) ( s  +  2)
Separate using partial fractions:
As + B/ s 2 +  1 
+   C/ s + 2   =
(As + B)  (s + 2) + Cs2 +  C/  ( s 2 +  2) ( s  +  1)
SO:
(C 
+ A) s2   +  (2A +
B) s  + 2B + C  =  =    -  s 2 +
s  -  1  
From which we see by inspection:
A + C = -1,   2A + 
B  = 1,  2B  +
C  = -1
Add:
-2A – 2C  = 2
 2A   + B
= 1
-----------------
B – 2C   =   3
Add:
B 
- 2C   =  3
4B 
+ 2C =  -2
----------------
5B        = 
1     Therefore:  B = 1/5  
2A + B = 1 and 2A =   1 - 1/5  
=   4/5
A =   ½ (4/5)  
=   2/5  so:   C
= -1 – 2B = -1 – 2(1/5) = -7/5
The inverse transform is therefore:
£ -1 {y(s)} 
=  2 cos t/ 5 -  sin t/5 – 7/5 exp (-2t)  = Y(1)
Problem for Math Mavens:
Solve , using the Laplace transform:
d
3 Y/ dt 3 -    d Y /dt   =  
0  
Using the conditions: 
Y(0) =  1,  Y’(0) = 
0  and  Y’ (0) = 1

No comments:
Post a Comment