(1)      Proof:  
By the Euclidean (division) algorithm there exist numbers q, r ∈  Z
Such that 0 < r
< n,   and a is of the form:
a = q n + r
By definition of   [a ]  mod n  =   [a]
 r  ∈   [a] ,   And:   r = a + (-q) n
  (2) Let Z be the
integers.  The ideal:
          
(5)  =   {5 j:  j ∈  Z }
Show all the congruence classes with respect to this ideal.
The
congruence classes are:
[a]   =  {a
+ j: j  ∈  (5)} 
=  {a + 5j: j ∈ 
Z }
[0]  =  {0 +
5 j: j  ∈  Z} 
=  { 5j: j ∈ 
Z }  = 
(5)
[1]
=  {1  + 5 j: j 
∈  Z}   =  {1,
6, -4, 11, -9}
[2]  = 
{2  + 5 j: j  ∈ 
Z}   =  {2, 7, -3, 12, -8}
[3]  = 
{3  + 5 j: j  ∈ 
Z}   =  {3, 8, -2, 13, -7}
[4]  = 
{4  + 5 j: j  ∈ 
Z}   =  {4, 9, -1, 14, -6}
[5]  =  {5  + 5j: : j 
∈  Z}   =   5 (j+
1) : j  ∈  Z}   =  [5]
= [0]
3) Using set notation we may define:
A ·  B  =  {x ·  y: x ∈ A,  y ∈ B}
A +  B  =  =  {x +  y:  x ∈ A,  y ∈ B}
4) Take S as the set of
integers, Z. Let the ideal I = (2) so that S / I =  Z 2    
Thence or otherwise, find:
a (a)     [0]    
b)   [1]     c) S/ I  = 
Z 5       
Solutions:  
Take S =    Z.  I = (2) 
so that S / I =  Z 2    
a) [0] =  {0, +
2, + 4, + 6…..}  =  I = (2)  
b) [1]  =   {1, 3, -1, 5, -3, 7….}
c)If S / I  =  Z 5       
S/I =  {[0], [1], [2],
[3], [4]}
5 ) Show every ring S has two ideals: S itself and {0}.
Every ring S always has at least two subrings,
namely S and the zero ring,  S 0.
Further, if S is also a  field then the only ideals in S are S and {0}.  Further:
 if 1   ∈ I  then I = S. (Let I = S be an ideal, 
I = {0} is also an ideal. )
 (In a field F, the
only ideals are 0 and F)
Basically, an ideal of a ring S is an additive
subgroup a  of  S with the property that:
a   ∈ S    and a  ∈  a    imply  ra  ∈  a  .  Clearly then the set containing the single
element 0 and the set containing the whole ring S are ideals.
No comments:
Post a Comment