The Problems again:
1)  (a) Given u(x,y) + iv(x,y) = 2x2 + i2y2  
find f(z,z*)
(b)  Express f(z)= z2 + z – 3 in polar form
2) Solve for x and y:   8x 2 + 3iy  -  4    = 8y   – 4iy
3) Solve: (z+1) 3  = z 3
Solutions:
(1)   Let:  z = x + iy, and z* = x – iy
Adding:   z + z* = (x + iy) + (x - iy) = 2x
Then: y = (z – z*)/ 2i
We see: x = (z + z*)/2
Subtracting: 
(z – z*) = [x + iy – x + iy] =  i2y
Then: y = (z – z*)/ 2i
We can now formulate the function f(z,z*):
f(z,z*) = 2[(z + z*)/2]2  + i2[(z – z*)/ 2i]2
2)  z2 = r2 exp(i2(q)) = r2 (cos (2q) + isin(2 q))
z = r exp(i(q)) = r(cos(q) + isin(q)
so: z2 + z = r2 (cos (2q) + isin(2 q)) +  r(cos(q) + isin(q)
Collecting like terms in i and simplifying:
f(z) =  r2(cos (2q) + r(cos(q)) + i{sin(2q) + sin(q)} – 3
so: iv(r, q) =  i{sin(2q) + sin(q)}
and v (r, q) =  {sin(2q) + sin(q)}
while: 
u(r, q) = r2 (cos (2q) + r(cos(q)) – 3
3)     8x 2 + 3iy  -  4    = 8y   – 4iy
 8x 2    =   4
So:   x 2    =   4/ 8   =  1/ 2
Therefore:  x =  Ö  ( 1/2)  =   1/ Ö2
=  Ö 2  /  2
And:   
8 y   =   - 3iy  - 4iy   =   - 7 iy
y  =   -7 i/  8
4)  Expand the left side and set equal to the right:
z 3 + 3z 2 + 3z + 1 = z 3
è3z 2 +3z + 1 = z 3 - z 3
or 3z 2 + 3z +1 = 0
(This can be solved using the quadratic formula, to give two roots)
Then: z1 = ½ + i Ö (3) / 6
Then: z1 = ½ + i Ö (3) / 6
And z2 = -(½ ) + iÖ (3)/ 6
Checking the result against the  original equation:
z 3 = 0.192i and (z 3 + 1) 3 = 0.192i
z 3 = 0.192i and (z 3 + 1) 3 = 0.192i
So both quantities are equal, the roots are correct.
No comments:
Post a Comment